1. Tanner KE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H. 2010; 224(12):1359-1372. [ DOI:10.1243/09544119JEIM823] [ PMID] 2. Ort C, Dayekh K, Xing M, Mequanint K. Emerging strategies for stem cell lineage commitment in tissue engineering and regenerative medicine. ACS Biomater Sci Eng. 2018; 4(11):3644-57. [ DOI:10.1021/acsbiomaterials.8b00532] [ PMID] 3. Babbar A, Jain V, Gupta D, Singh S, Prakash C, Pruncu C. Biomaterials and Fabrication Methods of Scaffolds for Tissue Engineering Applications. In: Singh S, Prakash C, Singh R. (eds) 3D Printing in Biomedical Engineering. Materials Horizons: From Nature to Nanomaterials. Singapore, Springer. 2020;3:167-86. [ DOI:10.1007/978-981-15-5424-7_8] 4. Raja IS, Fathima NN. Gelatin-Cerium Oxide nanocomposite for enhanced excisional wound healing. ACS Appl Bio Mater. 2018; 1(2):487-95. [ DOI:10.1021/acsabm.8b00208] [ PMID] 5. Nidhin M, Vedhanayagam M, Sangeetha S, Kiran M, Nazeer S, Jayasree R, et al. Fluorescent nanonetworks: a novel bioalley for collagen scaffolds and tissue engineering. Sci Rep. 2014; 4(8):59-68. [ DOI:10.1038/srep05968] [ PMID] [ ] 6. Vedhanayagam M, Nidhin M, Duraipandy N, Naresh N, Jaganathan G, Ranganathan M, et al. Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application. Int J Biol Macromol. 2017;99: 655-64. [ DOI:10.1016/j.ijbiomac.2017.02.102] [ PMID] 7. Kang MS, Lee SH, Park WJ, Lee JE, Kim B, Han DW. Advanced techniques for skeletal muscle tissue engineering and regeneration. Bioengineering (Basel). 2020;7(3):99-114. [ DOI:10.3390/bioengineering7030099] [ PMID] [ ] 8. Vedhanayagam M, Unni Nair B, Sreeram KJ. Collagen-ZnO scaffolds for wound healing applications: role of dendrimer functionalization and nanoparticle morphology. ACS Appl Bio Mater. 2018;1(6):42-1958. [ DOI:10.1021/acsabm.8b00491] [ PMID] 9. Najafi R, Asadi A, Zahri S, Abdolmaleki A. Comparison of biocompatibility and morphology of PC12 cell line on a Polycaprolactane/Silymarin scaffold and a Polycaprolactane/Tragacanth scaffold. Gene Cell Tissue. 2023;10(4):31-35. [ DOI:10.5812/gct-131955] 10. Gautam S, Sharma C, Purohit SD, Singh H, Dinda A, Potdar P, et al. Gelatin-Polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;119:111588-111600. [ DOI:10.1016/j.msec.2020.111588] [ PMID] 11. Cho Y, Quan M, Kang N, Jeong H, Hong M, Kim Y, et al. Strategy for enhancing mechanical properties and bone regeneration of 3D polycaprolactone kagome scaffold: Nano hydroxyapatite composite and its exposure. Eur Poly J. 2020; 134(5):109814-109825. [ DOI:10.1016/j.eurpolymj.2020.109814] 12. Taherkhani S, Moztarzadeh F. Fabrication of a poly (ɛ‐Caprolactone)/starch nanocomposite scaffold with a solvent‐casting/salt‐leaching technique for bone tissue engineering applications. J Appl Polym Sci. 2016;133(23):1-7. [ DOI:10.1002/app.43523] 13. Song P, Zhou C, Fan H, Zhang B, Pei X, Fan Y, et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Compos B Eng. 2018; 152:151-9. [ DOI:10.1016/j.compositesb.2018.06.029] 14. Nawalakhe R, Hudson S, Seyam A, Waly A, Abou-Zeid N, Ibrahim H. Development of electrospun iminochitosan for improved wound healing application. J Eng Fiber Fabr. 2012; 7(2):47-55. [ DOI:10.1177/155892501200700208] 15. Han X, Xing Z, Si S, Yao Y, Zhang Q. Electrospun grape seed Polyphenols/Gelatin composite fibers contained Silver nanoparticles as biomaterials. Fibers Polym. 2014; 15:2572-80. [ DOI:10.1007/s12221-014-2572-y] 16. Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei, D, Rezai Rad, et al. Egg shell-derived Calcium phosphate/Carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Mater Sci Eng C Mater Biol Appl. 2019;100:564-575. [ DOI:10.1016/j.msec.2019.03.003] [ PMID] 17. Baker S, Baker G. Luminescent Carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49(38):6726-44. [ DOI:10.1002/anie.200906623] [ PMID] 18. Ray S, Saha A, Jana N, Sarkar R. Fluorescent Carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem A. 2009; 113(43):18546-51. [ DOI:10.1021/jp905912n] 19. Li H, Liu R, Liu Y, Huang H, Yu H, Ming H, et al. Carbon quantum dots/Cu 2 O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J Mater Chem. 2012;22(34):17470-5. [ DOI:10.1039/c2jm32827e] 20. Yan L, Li Y, Yang Y, Liu X, Chen Y, Xu B. P3HT/Dodecylamine functioned Carbon microspheres composite films for polymer solar cells. Int J Mol Sci. 2015; 23(6):549-56. [ DOI:10.1080/1536383X.2014.885958] 21. Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature. 2015;523(7560):324-328. [ DOI:10.1038/nature14563] [ PMID] 22. Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent Carbon dots using watermelon peel as a Carbon source. Mater Lett. 2012; 66(1):222-4. [ DOI:10.1016/j.matlet.2011.08.081] 23. Doroodmand MM, Askari M. Synthesis of a novel Nitrogen-doped carbon dot by microwave-assisted carbonization method and its applications as selective probes for optical pH (acidity) sensing in aqueous/nonaqueous media, determination of Nitrate/Nitrite, and optical recognition of NOX gas. Anal Chim Acta. 2017;968:74-84. [ DOI:10.1016/j.aca.2017.02.041] [ PMID] 24. Tarasenka N, Stupak A, Tarasenko N, Chakrabarti S, Mariotti D. Structure and optical properties of Carbon nanoparticles generated by laser treatment of Graphite in liquids. Chemphyschem. 2017;18(9):1074-1083. [ DOI:10.1002/cphc.201601182] [ PMID] 25. Li X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep. 2014;4(1):4976. [ DOI:10.1038/srep04976] [ ] 26. Liu W, Diao H, Chang H, Wang H, Li T, Wei W. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens Actuators B Chem. 2017;241:190-8. [ DOI:10.1016/j.snb.2016.10.068] 27. Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, et al. Electrochemical synthesis of Carbon nanodots directly from Alcohols. Chemistry. 2014;20(17):4993-9. [ DOI:10.1002/chem.201304869] [ PMID] 28. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organosilane‐functionalized carbon dots. Adv Funct Mater.2011;21(6):1027-31. [ DOI:10.1002/adfm.201002279] 29. Dager A, Uchida T, Maekawa T, Tachibana M. synthesis and characterization of mono-disperse Carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. sci rep. 2019;9(1):14004. [ DOI:10.1038/s41598-019-50397-5] [ PMID] [ ] 30. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive Chitosan/Carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15(2):635-43. [ DOI:10.1021/bm401679q] [ PMID] [ ] 31. Rastegar S, Mehdikhani M, Bigham A, Poorazizi E, Rafienia M. Poly Glycerol Sebacate/Polycaprolactone/Carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering. Mater Chem Phys. 2021;266:124-135. [ DOI:10.1016/j.matchemphys.2021.124543] 32. Abbaszadeh S, Asadi A, Zahri S, Abdolmaleki A, Mahmoudi F. Does phenytoin have neuroprotective role and affect biocompatibility of decellularized sciatic nerve scaffold. Gene, Cell and Tissue. 2020;8(1):1-7. [ DOI:10.5812/gct.108726] 33. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. [ DOI:10.1016/0022-1759(83)90303-4] [ PMID] 34. Hasanpour F, Hamidi K, Zahri S, Latifi Navid S. Study of cell viability and JNK/SAPK level following abiotic stresses (heat & radiation) in Breast Cancer cells. J Educ Health Promot. 2017;17(2):154-63. 35. Najafi R, Asadi A, Zahri S, Abdolmaleki A. Polycaprolactan/tragacanth nanoscaffold enriched with sililymarin as a protector of neural progenitor cells under oxidative stress conditions. Cell Tissue J. 2023;14(1):66-79. [Full text in Persian] [ DOI:10.61186/JCT.14.1.66] 36. Nallayagari AR, Sgreccia E, Pizzoferrato R, Cabibbo M, Kaciulis S, Bolli E, et al. Tuneable properties of carbon quantum dots by different synthetic methods. J Nanostructure Chem. 2021;30:1-6. [ DOI:10.1007/s40097-021-00431-8] 37. Sun Y, Liu X, George MN, Park S, Gaihre B, Terzic A, et al. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J Biomed Mater Res A. 2021;109(2):193-206. [ DOI:10.1002/jbm.a.37016] [ PMID] 38. Saljoughi H, Khakbaz F, Mahani M. Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging. Photodiagnosis Photodyn Ther. 2020;30:687-701. [ DOI:10.1016/j.pdpdt.2020.101687] [ PMID] 39. Ghorghi M, Gharavi AM, Rafienia M. Evaluation of mg63 cells behavior with electrospun nanocomposite scaffolds of polycaprolactone and carbon quantum dot containing captopril for bone tissue engineering. J Knowl Health Basic Med Sci. 2020;15(1):10-8. 40. Yan C, Ren Y, Sun X, Jin L, Liu X, Chen H, et al. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. J Photochem Photobiol B. 2020;202:111680-34. [ DOI:10.1016/j.jphotobiol.2019.111680] [ PMID] 41. Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A. Electrospun captopril‐loaded PCL‐carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polym Adv Technol. 2020;31(12):3302-15. [ DOI:10.1002/pat.5054] 42. Nandiyanto AB, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indones J Sci Technol. 2019;4(1):97-118. [ DOI:10.17509/ijost.v4i1.15806] 43. Rosenkrans ZT, Sun T, Jiang D, Chen W, Barnhart T, Zhang Z, et al. Selenium-doped Carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. adv sci (weinh). 2020;7(12):2000420-2000433. [ DOI:10.1002/advs.202000420] [ PMID] [ ] 44. Sharma N, Das GS, Yun K. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Appl Microbiol Biotechnol. 2020;104(16):7187-200. [ DOI:10.1007/s00253-020-10726-5] [ PMID] 45. Son MH, Park SW, Jung YK. Antioxidant and anti-aging carbon quantum dots using tannic acid. Nanotechnology. 2021;32(41):10-20. [ DOI:10.1088/1361-6528/ac027b] [ PMID] 46. Abolghasemzade S, Pourmadadi M, Rashedi H, Yazdian F, Kianbakht S, Navaei-Nigjeh M. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J Mater Chem B. 2021;9(3):658-676. [ DOI:10.1039/D0TB01747G] [ PMID] 47. Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Smart, tunable cqds with antioxidant properties for biomedical applications-ecofriendly synthesis and characterization. Molecules. 2020;25(3):736. [ DOI:10.3390/molecules25030736] [ PMID] [ ] 48. Das B, Pal P, Dadhich P, Dutta J, Dhara S. In vivo cell tracking, reactive Oxygen species scavenging, and antioxidative gene down regulation by long-term exposure of biomass-derived Carbon dots. Acs Biomater Sci Eng. 2019;5(1):346-356. [ DOI:10.1021/acsbiomaterials.8b01101] [ PMID]
|