Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran , Zahri@uma.ac.ir
Abstract: (327 Views)
Background: Tissue engineering, by designing biological scaffolds and imitating the extracellular environment, helps the growth and proliferation of cells and plays a key role in replacing and repairing damaged tissues. In recent years, the addition of nanoparticles, such as carbon quantum dots, to biological scaffolds has received attention. In this research, the synthesis of polycaprolactone scaffolds containing carbon quantum dots and the investigation of biocompatibility effects and their protection have been discussed. Methods: Carbon quantum dots were synthesized using the pyrolysis method, and polymer scaffolds containing carbon quantum dots were prepared by the electrospinning method. The physical and chemical properties of the scaffold were evaluated by scanning electron microscopy and FTIR spectroscopy. The scaffolds' biocompatibility and antioxidant properties were measured by the MTT method. Results: Examination of the morphology and chemical showed the appropriate porosity of the scaffold containing carbon quantum dots. The MTT assay significantly enhanced stem cell viability on scaffolds incorporating carbon quantum dots. Furthermore, these scaffolds exhibited a significant protective effect against oxidative stress. Conclusion: This study showed that the polycaprolactone scaffold containing carbon quantum dots, with high biocompatibility and suitable antioxidant properties, provides an effective substrate for tissue engineering and cell protection under oxidative stress conditions.
Type of Study: article |
Subject: Biotechnology Received: 2024/10/26 | Accepted: 2025/01/6 | Published: 2025/03/2
References
1. Tanner KE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H. 2010; 224(12):1359-1372. [DOI:10.1243/09544119JEIM823] [PMID]
2. Ort C, Dayekh K, Xing M, Mequanint K. Emerging strategies for stem cell lineage commitment in tissue engineering and regenerative medicine. ACS Biomater Sci Eng. 2018; 4(11):3644-57. [DOI:10.1021/acsbiomaterials.8b00532] [PMID]
3. Babbar A, Jain V, Gupta D, Singh S, Prakash C, Pruncu C. Biomaterials and Fabrication Methods of Scaffolds for Tissue Engineering Applications. In: Singh S, Prakash C, Singh R. (eds) 3D Printing in Biomedical Engineering. Materials Horizons: From Nature to Nanomaterials. Singapore, Springer. 2020;3:167-86. [DOI:10.1007/978-981-15-5424-7_8]
4. Raja IS, Fathima NN. Gelatin-Cerium Oxide nanocomposite for enhanced excisional wound healing. ACS Appl Bio Mater. 2018; 1(2):487-95. [DOI:10.1021/acsabm.8b00208] [PMID]
5. Nidhin M, Vedhanayagam M, Sangeetha S, Kiran M, Nazeer S, Jayasree R, et al. Fluorescent nanonetworks: a novel bioalley for collagen scaffolds and tissue engineering. Sci Rep. 2014; 4(8):59-68. [DOI:10.1038/srep05968] [PMID] []
6. Vedhanayagam M, Nidhin M, Duraipandy N, Naresh N, Jaganathan G, Ranganathan M, et al. Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application. Int J Biol Macromol. 2017;99: 655-64. [DOI:10.1016/j.ijbiomac.2017.02.102] [PMID]
7. Kang MS, Lee SH, Park WJ, Lee JE, Kim B, Han DW. Advanced techniques for skeletal muscle tissue engineering and regeneration. Bioengineering (Basel). 2020;7(3):99-114. [DOI:10.3390/bioengineering7030099] [PMID] []
8. Vedhanayagam M, Unni Nair B, Sreeram KJ. Collagen-ZnO scaffolds for wound healing applications: role of dendrimer functionalization and nanoparticle morphology. ACS Appl Bio Mater. 2018;1(6):42-1958. [DOI:10.1021/acsabm.8b00491] [PMID]
9. Najafi R, Asadi A, Zahri S, Abdolmaleki A. Comparison of biocompatibility and morphology of PC12 cell line on a Polycaprolactane/Silymarin scaffold and a Polycaprolactane/Tragacanth scaffold. Gene Cell Tissue. 2023;10(4):31-35. [DOI:10.5812/gct-131955]
10. Gautam S, Sharma C, Purohit SD, Singh H, Dinda A, Potdar P, et al. Gelatin-Polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;119:111588-111600. [DOI:10.1016/j.msec.2020.111588] [PMID]
11. Cho Y, Quan M, Kang N, Jeong H, Hong M, Kim Y, et al. Strategy for enhancing mechanical properties and bone regeneration of 3D polycaprolactone kagome scaffold: Nano hydroxyapatite composite and its exposure. Eur Poly J. 2020; 134(5):109814-109825. [DOI:10.1016/j.eurpolymj.2020.109814]
12. Taherkhani S, Moztarzadeh F. Fabrication of a poly (ɛ‐Caprolactone)/starch nanocomposite scaffold with a solvent‐casting/salt‐leaching technique for bone tissue engineering applications. J Appl Polym Sci. 2016;133(23):1-7. [DOI:10.1002/app.43523]
13. Song P, Zhou C, Fan H, Zhang B, Pei X, Fan Y, et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Compos B Eng. 2018; 152:151-9. [DOI:10.1016/j.compositesb.2018.06.029]
14. Nawalakhe R, Hudson S, Seyam A, Waly A, Abou-Zeid N, Ibrahim H. Development of electrospun iminochitosan for improved wound healing application. J Eng Fiber Fabr. 2012; 7(2):47-55. [DOI:10.1177/155892501200700208]
15. Han X, Xing Z, Si S, Yao Y, Zhang Q. Electrospun grape seed Polyphenols/Gelatin composite fibers contained Silver nanoparticles as biomaterials. Fibers Polym. 2014; 15:2572-80. [DOI:10.1007/s12221-014-2572-y]
16. Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei, D, Rezai Rad, et al. Egg shell-derived Calcium phosphate/Carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Mater Sci Eng C Mater Biol Appl. 2019;100:564-575. [DOI:10.1016/j.msec.2019.03.003] [PMID]
17. Baker S, Baker G. Luminescent Carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl. 2010;49(38):6726-44. [DOI:10.1002/anie.200906623] [PMID]
18. Ray S, Saha A, Jana N, Sarkar R. Fluorescent Carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem A. 2009; 113(43):18546-51. [DOI:10.1021/jp905912n]
19. Li H, Liu R, Liu Y, Huang H, Yu H, Ming H, et al. Carbon quantum dots/Cu 2 O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J Mater Chem. 2012;22(34):17470-5. [DOI:10.1039/c2jm32827e]
20. Yan L, Li Y, Yang Y, Liu X, Chen Y, Xu B. P3HT/Dodecylamine functioned Carbon microspheres composite films for polymer solar cells. Int J Mol Sci. 2015; 23(6):549-56. [DOI:10.1080/1536383X.2014.885958]
21. Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature. 2015;523(7560):324-328. [DOI:10.1038/nature14563] [PMID]
22. Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent Carbon dots using watermelon peel as a Carbon source. Mater Lett. 2012; 66(1):222-4. [DOI:10.1016/j.matlet.2011.08.081]
23. Doroodmand MM, Askari M. Synthesis of a novel Nitrogen-doped carbon dot by microwave-assisted carbonization method and its applications as selective probes for optical pH (acidity) sensing in aqueous/nonaqueous media, determination of Nitrate/Nitrite, and optical recognition of NOX gas. Anal Chim Acta. 2017;968:74-84. [DOI:10.1016/j.aca.2017.02.041] [PMID]
24. Tarasenka N, Stupak A, Tarasenko N, Chakrabarti S, Mariotti D. Structure and optical properties of Carbon nanoparticles generated by laser treatment of Graphite in liquids. Chemphyschem. 2017;18(9):1074-1083. [DOI:10.1002/cphc.201601182] [PMID]
25. Li X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep. 2014;4(1):4976. [DOI:10.1038/srep04976] []
26. Liu W, Diao H, Chang H, Wang H, Li T, Wei W. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens Actuators B Chem. 2017;241:190-8. [DOI:10.1016/j.snb.2016.10.068]
27. Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, et al. Electrochemical synthesis of Carbon nanodots directly from Alcohols. Chemistry. 2014;20(17):4993-9. [DOI:10.1002/chem.201304869] [PMID]
28. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organosilane‐functionalized carbon dots. Adv Funct Mater.2011;21(6):1027-31. [DOI:10.1002/adfm.201002279]
29. Dager A, Uchida T, Maekawa T, Tachibana M. synthesis and characterization of mono-disperse Carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. sci rep. 2019;9(1):14004. [DOI:10.1038/s41598-019-50397-5] [PMID] []
30. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive Chitosan/Carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15(2):635-43. [DOI:10.1021/bm401679q] [PMID] []
31. Rastegar S, Mehdikhani M, Bigham A, Poorazizi E, Rafienia M. Poly Glycerol Sebacate/Polycaprolactone/Carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering. Mater Chem Phys. 2021;266:124-135. [DOI:10.1016/j.matchemphys.2021.124543]
32. Abbaszadeh S, Asadi A, Zahri S, Abdolmaleki A, Mahmoudi F. Does phenytoin have neuroprotective role and affect biocompatibility of decellularized sciatic nerve scaffold. Gene, Cell and Tissue. 2020;8(1):1-7. [DOI:10.5812/gct.108726]
33. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. [DOI:10.1016/0022-1759(83)90303-4] [PMID]
34. Hasanpour F, Hamidi K, Zahri S, Latifi Navid S. Study of cell viability and JNK/SAPK level following abiotic stresses (heat & radiation) in Breast Cancer cells. J Educ Health Promot. 2017;17(2):154-63.
35. Najafi R, Asadi A, Zahri S, Abdolmaleki A. Polycaprolactan/tragacanth nanoscaffold enriched with sililymarin as a protector of neural progenitor cells under oxidative stress conditions. Cell Tissue J. 2023;14(1):66-79. [Full text in Persian] [DOI:10.61186/JCT.14.1.66]
36. Nallayagari AR, Sgreccia E, Pizzoferrato R, Cabibbo M, Kaciulis S, Bolli E, et al. Tuneable properties of carbon quantum dots by different synthetic methods. J Nanostructure Chem. 2021;30:1-6. [DOI:10.1007/s40097-021-00431-8]
37. Sun Y, Liu X, George MN, Park S, Gaihre B, Terzic A, et al. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J Biomed Mater Res A. 2021;109(2):193-206. [DOI:10.1002/jbm.a.37016] [PMID]
38. Saljoughi H, Khakbaz F, Mahani M. Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging. Photodiagnosis Photodyn Ther. 2020;30:687-701. [DOI:10.1016/j.pdpdt.2020.101687] [PMID]
39. Ghorghi M, Gharavi AM, Rafienia M. Evaluation of mg63 cells behavior with electrospun nanocomposite scaffolds of polycaprolactone and carbon quantum dot containing captopril for bone tissue engineering. J Knowl Health Basic Med Sci. 2020;15(1):10-8.
40. Yan C, Ren Y, Sun X, Jin L, Liu X, Chen H, et al. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. J Photochem Photobiol B. 2020;202:111680-34. [DOI:10.1016/j.jphotobiol.2019.111680] [PMID]
41. Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A. Electrospun captopril‐loaded PCL‐carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polym Adv Technol. 2020;31(12):3302-15. [DOI:10.1002/pat.5054]
42. Nandiyanto AB, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indones J Sci Technol. 2019;4(1):97-118. [DOI:10.17509/ijost.v4i1.15806]
43. Rosenkrans ZT, Sun T, Jiang D, Chen W, Barnhart T, Zhang Z, et al. Selenium-doped Carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. adv sci (weinh). 2020;7(12):2000420-2000433. [DOI:10.1002/advs.202000420] [PMID] []
44. Sharma N, Das GS, Yun K. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Appl Microbiol Biotechnol. 2020;104(16):7187-200. [DOI:10.1007/s00253-020-10726-5] [PMID]
45. Son MH, Park SW, Jung YK. Antioxidant and anti-aging carbon quantum dots using tannic acid. Nanotechnology. 2021;32(41):10-20. [DOI:10.1088/1361-6528/ac027b] [PMID]
46. Abolghasemzade S, Pourmadadi M, Rashedi H, Yazdian F, Kianbakht S, Navaei-Nigjeh M. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J Mater Chem B. 2021;9(3):658-676. [DOI:10.1039/D0TB01747G] [PMID]
47. Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Smart, tunable cqds with antioxidant properties for biomedical applications-ecofriendly synthesis and characterization. Molecules. 2020;25(3):736. [DOI:10.3390/molecules25030736] [PMID] []
48. Das B, Pal P, Dadhich P, Dutta J, Dhara S. In vivo cell tracking, reactive Oxygen species scavenging, and antioxidative gene down regulation by long-term exposure of biomass-derived Carbon dots. Acs Biomater Sci Eng. 2019;5(1):346-356. [DOI:10.1021/acsbiomaterials.8b01101] [PMID]