[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 24, Issue 3 (Autumn 2024) ::
J Ardabil Univ Med Sci 2024, 24(3): 349-363 Back to browse issues page
Tracking Antibiotic Resistance in Pseudomonas aeruginosa: A Four-Year Surveillance Study in Ardabil City Hospitals
Saghar Jafari-Ramedani , Fereshteh Hasanpour , Alireza Mohammadnia , Farzad Khademi * , Aida Alinezhad
Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran , f.khademi@arums.ac.ir
Abstract:   (161 Views)
Background: The Gram-negative pathogen Pseudomonas aeruginosa (P. aeruginosa) is a common cause of hospital-acquired infections. This bacterium is continuously increasing its resistance to commonly used antimicrobial drugs, posing significant challenges for clinical treatment. Therefore, this study aimed to investigate the trend of antibiotic resistance in P. aeruginosa from 2019 to 2023 in hospitals in Ardabil city.
Methods: This cross-sectional descriptive study utilized 200 clinical isolates of P. aeruginosa obtained from urine, respiratory, wound, blood, and cerebrospinal fluid samples of patients who visited Ardabil hospitals between June 2019 and May 2023. The sensitivity and resistance of P. aeruginosa isolates to antibiotics-including piperacillin, piperacillin / tazobactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, amikacin, tobramycin, netilmicin, ciprofloxacin, ofloxacin, norfloxacin, levofloxacin, and colistin-were assessed using the disk diffusion and agar dilution methods.
Results: Over a period of 4 years, the resistance of P. aeruginosa to various antibiotics was observed as follows: piperacillin 45.5%, piperacillin/tazobactam 31%, ceftazidime 44%, cefepime 46%, aztreonam 12%, imipenem 67.5%, meropenem 52%, amikacin 43%, tobramycin 45.5%, netilmicin 39.2%, ciprofloxacin 55.5%, ofloxacin 62%, norfloxacin 53.5%, levofloxacin 55.5%, and colistin 9%. It is worth mentioning that the trend of antibiotic resistance in P. aeruginosa to all tested antibiotics increased during the first and second years, decreased in the third year, and then experienced a significant increase again in the fourth year. Throughout this period, the emergence of multidrug-resistant (MDR) strains of P. aeruginosa has also been on the rise.
Conclusion: The present study confirmed that the overall trend of resistance to various antibiotics among P. aeruginosa strains isolated from patients in Ardabil is on the rise.
Keywords: Pseudomonas aeruginosa, Drug Resistance, Antibiotic, Multidrug-Resistant
Full-Text [PDF 618 kb]   (44 Downloads)    
Type of Study: article | Subject: Microbiology
Received: 2025/01/15 | Accepted: 2025/02/15 | Published: 2025/03/3
References
1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. [DOI:10.1016/S0140-6736(21)02724-0] [PMID]
2. Hakanen A, Jalava J, Kaartinen L. National action plan on antimicrobial resistance 2017-2021, Ministry of Social Affairs and Health, Helsinki 2017;12: 16-17.
3. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom. 2016: 10-12.
4. Bassetti M, Carnelutti A, Peghin M. Patient specific risk stratification for antimicrobial resistance and possible treatment strategies in gram-negative bacterial infections. Expert Rev Anti Infect Ther. 2017;15(1):55-65. [DOI:10.1080/14787210.2017.1251840] [PMID]
5. World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO; [Cited 24 October 2017]. Available from. http://www.who.int/mediacentre/news/releases/2017/bacteria‑antibiotics‑needed/en/
6. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;21;18(6):596. [DOI:10.1186/PREACCEPT-6556009101270526] [PMID] []
7. Liu L, Liu B, Li Y, Zhang W. Successful control of resistance in Pseudomonas aeruginosa using antibiotic stewardship and infection control programs at a Chinese university hospital: a 6-year prospective study. Infect Drug Resist. 2018:637-46. [DOI:10.2147/IDR.S163853] [PMID] []
8. Wang Y, Ma J, Li W, Liu M, Ding Y. Five-year surveillance of antimicrobial resistance changes and epidemiological characteristics in Pseudomonas aeruginosa: a retrospective study in a Chinese city hospital. Jundishapur J Microbiol. 2021;14(11). [DOI:10.5812/jjm118107]
9. Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, et al. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. Msphere. 2021;6(3):10.1128/msphere. 00202-21. [DOI:10.1128/mSphere.00202-21] [PMID] []
10. Saeli N, Jafari-Ramedani S, Ramazanzadeh R, Nazari M, Sahebkar A, Khademi F. Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect Dis. 2024;24(1):680. [DOI:10.1186/s12879-024-09585-6] [PMID] []
11. Jafari-Ramedani S, Nazari M, Arzanlou M, Peeri-Dogaheh H, Sahebkar A, Khademi F. Prevalence and molecular characterization of colistin resistance in Pseudomonas aeruginosa isolates: insights from a study in Ardabil hospitals. BMC Microbiol. 2024;24(1):152. [DOI:10.1186/s12866-024-03309-1] [PMID] []
12. Ibrahim D, Jabbour J-F, Kanj SS. Current choices of antibiotic treatment for Pseudomonas aeruginosa infections. Curr Opin Infect Dis. 2020;33(6):464-73. [DOI:10.1097/QCO.0000000000000677] [PMID]
13. Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. New drugs for the treatment of Pseudomonas aeruginosa infections with limited treatment options: a narrative review. Antibiotics (Basel). 2022;11(5):579. [DOI:10.3390/antibiotics11050579] [PMID] []
14. Bazghandi SA, Safarirad S, Arzanlou M, Peeri-Dogaheh H, Ali-Mohammadi H, Khademi F. Prevalence of multidrug-resistant Pseudomonas aeruginosa strains in Ardabil. J Ardabil Univ Med Sci. 2020;20(2):280-6. [Full text in Persian] [DOI:10.52547/jarums.20.2.280]
15. Nazari M, Ahmadi H, Hosseinzadeh S, Sahebkar A, Khademi F. Imipenem resistance associated with amino acid alterations of the OprD porin in Pseudomonas aeruginosa clinical isolates. Acta Microbiol Immunol Hung. 2023;70(3):206-12. [DOI:10.1556/030.2023.02060] [PMID]
16. Morehead MS, Scarbrough C. Emergence of global antibiotic resistance. Prim Care. 2018;45(3):467-84. [DOI:10.1016/j.pop.2018.05.006] [PMID]
17. Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117-31. [DOI:10.1007/s40265-021-01635-6] [PMID] []
18. Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect Med (Beijing). 2023;2(3):178-94. [DOI:10.1016/j.imj.2023.05.003] [PMID] []
19. Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2017;129(2):242-58. [DOI:10.1080/00325481.2017.1246055] [PMID]
20. Holmes CL, Anderson MT, Mobley HL, Bachman MA. Pathogenesis of gram-negative bacteremia. Clin Microbiol Rev. 2021;34(2):10.1128/cmr. 00234-20. [DOI:10.1128/CMR.00234-20] [PMID] []
21. Shi Q, Huang C, Xiao T, Wu Z, Xiao Y. A retrospective analysis of Pseudomonas aeruginosa bloodstream infections: prevalence, risk factors, and outcome in carbapenem-susceptible and-non-susceptible infections. Antimicrob Resist Infect Control. 2019;8:1-9. [DOI:10.1186/s13756-019-0520-8] [PMID] []
22. Gonzalez MR, Fleuchot B, Lauciello L, Jafari P, Applegate LA, Raffoul W, et al. Effect of human burn wound exudate on Pseudomonas aeruginosa virulence. mSphere. 2016;1(2):10.1128/msphere. 00111-15. [DOI:10.1128/mSphere.00111-15] [PMID] []
23. Rodríguez-Lucas C, Fernández J, Martínez-Sela M, Álvarez-Vega M, Moran N, Garcia A, et al. Pseudomonas aeruginosa nosocomial meningitis in neurosurgical patients with intraventricular catheters: therapeutic approach and review of the literature. Enferm Infecc Microbiol Clin (Engl Ed). 2020;38(2):54-58. [DOI:10.1016/j.eimc.2019.04.003] [PMID]
24. Mohammadzadeh M, Fami HS, Motiee N, Sanjabi M. Identification of organic milk production potentials and requirements in rural and tribal areas from the viewpoints of Ardabil provincial animal husbandry experts. J Rural Res. 2020;10(4). [Full text in Persian]
25. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):10.1128/cmr. 00031-19. [DOI:10.1128/CMR.00031-19] [PMID] []
26. Ebrahimzadeh Shiraz T, Rezaei Yazdi H, Alijanianzadeh M. Evaluation of Carbapenemase resistance in Pseudomonas aeruginosa and Enterobacteriaceae family isolated from clinical specimens by using phenotypic methods in 2014-2015. Pars J Med Sci. 2022;14(4):8-15. [Full text in Persian] [DOI:10.29252/jmj.14.4.8]
27. Mohammadi M, Beig M, Barikrou K, Soltani S, Ali Nasab Maleki L, Veisi P, et al. A review of phenotypic methods for detecting antibiotic resistance induced by carbapenemase enzyme in bacteria isolated from clinical specimens. Med J Mashhad Univ Med Sci. 2022;65(1):148-71. [Full text in Persian]
28. Lai C-C, Chen S-Y, Ko W-C, Hsueh P-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57(4):106324. [DOI:10.1016/j.ijantimicag.2021.106324] [PMID] []
29. Dancer SJ. Reducing the risk of COVID-19 transmission in hospitals: focus on additional infection control strategies. Surgery (Oxf). 2021;39(11):752-8. [DOI:10.1016/j.mpsur.2021.10.003] [PMID] []
30. Hu Z, Yang L, Liu Z, Han J, Zhao Y, Jin Y, et al. Excessive disinfection aggravated the environmental prevalence of antimicrobial resistance during COVID-19 pandemic. Sci Total Environ. 2023;882:163598. [DOI:10.1016/j.scitotenv.2023.163598] [PMID] []
31. Al-Hadidi SH, Alhussain H, Abdel Hadi H, Johar A, Yassine HM, Al Thani AA, et al. The spectrum of antibiotic prescribing during COVID-19 pandemic: a systematic literature review. Microb Drug Resist. 2021 ;27(12):1705-25. [DOI:10.1089/mdr.2020.0619] [PMID] []
32. Charani E, Mendelson M, Pallett SJ, Ahmad R, Mpundu M, Mbamalu O, et al. An analysis of existing national action plans for antimicrobial resistance-gaps and opportunities in strategies optimising antibiotic use in human populations. Lancet Glob Health. 2023;11(3):e466-e74. [DOI:10.1016/S2214-109X(23)00019-0] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.ARUMS.REC.1402.335



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari-Ramedani S, Hasanpour F, Mohammadnia A, Khademi F, Alinezhad A. Tracking Antibiotic Resistance in Pseudomonas aeruginosa: A Four-Year Surveillance Study in Ardabil City Hospitals. J Ardabil Univ Med Sci 2024; 24 (3) :349-363
URL: http://jarums.arums.ac.ir/article-1-2466-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 3 (Autumn 2024) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.14 seconds with 41 queries by YEKTAWEB 4623