1. Ralhan R, Kaur J. Alkylating agents and cancer therapy. Expert Opin Ther Pat. 2007;17(9):1061-75. [ DOI:10.1517/13543776.17.9.1061] 2. McCune JS, Friedman DL, Schuetze S, Blough D, Magbulos M, Hawkins DS. Influence of age upon ifosfamide-induced nephrotoxicity. Pediatr Blood Cancer. 2004;42(5):427-32. [ DOI:10.1002/pbc.20011] [ PMID] 3. Han H-Y, Choi M-S, Yoon S, Ko J-W, Kim S-K, Kim T-W. Investigation of ifosfamide toxicity induces common upstream regulator in liver and kidney. Int J Mol Sci. 2021;22(22):12201. [ DOI:10.3390/ijms222212201] [ PMID] [ ] 4. Di Cataldo A, Astuto M, Rizzo G, Bertuna G, Russo G, Incorpora G, et al. Neurotoxicity during ifosfamide treatment in children. Med Sci Monit. 2009;15(1):25-30. 5. Kashoor I, Batlle D. Proximal renal tubular acidosis with and without Fanconi syndrome. Kidney Res Clin Pract. 2019;38(3):267-81. [ DOI:10.23876/j.krcp.19.056] [ PMID] [ ] 6. Chugh R, Wagner T, Griffith KA, Taylor JM, Thomas DG, Worden FP, et al. Assessment of ifosfamide pharmacokinetics, toxicity, and relation to CYP3A4 activity as measured by the erythromycin breath test in patients with sarcoma. Cancer. 2007;109(11):2315-22. [ DOI:10.1002/cncr.22669] [ PMID] 7. Willits I, Price L, Parry A, Tilby M, Ford D, Cholerton S, et al. Pharmacokinetics and metabolism of ifosfamide in relation to DNA damage assessed by the COMET assay in children with cancer. Br J Cancer. 2005;92(9):1626-35. [ DOI:10.1038/sj.bjc.6602554] [ PMID] [ ] 8. Wu X, Cui W, Guo W, Liu H, Luo J, Zhao L, et al. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice. Neurosci Bull. 2020;36(11):1158-70. [ DOI:10.1007/s12264-020-00505-7] [ PMID] [ ] 9. Singh S, Kumar A. Protective effect of edaravone on cyclophosphamide induced oxidative stress and neurotoxicity in rats. Curr Drug Saf. 2019;14(3):209-16. [ DOI:10.2174/1574886314666190506100717] [ PMID] [ ] 10. Duann P, Lin P-H. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529-551. [ DOI:10.1007/978-3-319-55330-6_27] [ PMID] [ ] 11. Mafra D, Gidlund EK, Borges NA, Magliano DAC, Lindholm B, Stenvinkel P, et al. Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria. Eur J Clin Invest. 2018;48(11):e13020. [ DOI:10.1111/eci.13020] [ PMID] 12. Ashkar F, Bhullar KS, Wu J. The effect of polyphenols on kidney disease: Targeting mitochondria. Nutrients. 2022;14(15):3115. [ DOI:10.3390/nu14153115] [ PMID] [ ] 13. Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 2018;145:187-96. [ DOI:10.1016/j.phytochem.2017.09.016] [ PMID] 14. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Shahbaz M, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019;235:116797. [ DOI:10.1016/j.lfs.2019.116797] [ PMID] 15. Garg A, Chaturvedi S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr Drug Targets. 2022;23(4):420-36. [ DOI:10.2174/1389450122666210824141044] [ PMID] 16. Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Mohamed WA, Metwally MM, et al. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, inflammatory cytokines, and apoptosis biomarkers. Toxicol Res. 2022;11(1):235-44. [ DOI:10.1093/toxres/tfac003] [ PMID] [ ] 17. Lee E-J, Kang M-K, Kim DY, Kim Y-H, Oh H, Kang Y-H. Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients. 2018;10(7):882. [ DOI:10.3390/nu10070882] [ PMID] [ ] 18. Ali BH, Adham SA, Al Za'abi M, Waly MI, Yasin J, Nemmar A, et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One. 2015;10(4):e0125285. [ DOI:10.1371/journal.pone.0125285] [ PMID] [ ] 19. Nagavally RR, Sunilkumar S, Akhtar M, Trombetta LD, Ford SM. Chrysin ameliorates Cyclosporine-A-induced renal fibrosis by inhibiting TGF-β1-induced epithelial-mesenchymal transition. Int J Mol Sci. 2021;22(19):10252. [ DOI:10.3390/ijms221910252] [ PMID] [ ] 20. Zhou Y, Tao H, Xu N, Zhou S, Peng Y, Zhu J, et al. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J Food Biochem. 2022;46(12):e14379. [ DOI:10.1111/jfbc.14379] 21. Shabani M, Bayrami D, Moghadam AA, Jamali Z, Salimi A. Pretreatment of ellagic acid protects ifosfamide-induced acute nephrotoxicity in rat kidneys: A mitochondrial, histopathological and oxidative stress approaches. Toxicol Rep. 2023;10:441-7. [ DOI:10.1016/j.toxrep.2023.04.005] [ PMID] [ ] 22. Salimi A, Shabani M, Mohammadi H, Sudi V. Intraperitoneal pretreatment of ellagic acid and chrysin alleviate ifosfamide-induced neurotoxicity, but betanin induces death in male wistar rats. Hum Exp Toxicol. 2023;42:09603271221147883. [ DOI:10.1177/09603271221147883] [ PMID] 23. Micakovic T, Banczyk WZ, Clark E, Kränzlin B, Peters J, Hoffmann SC. Isolation of pure mitochondria from rat kidneys and western blot of mitochondrial respiratory chain complexes. Bio-protocol. 2019;9(19):e3379. [ DOI:10.21769/BioProtoc.3379] [ PMID] [ ] 24. Sadighara M, Amirsheardost Z, Minaiyan M, Hajhashemi V, Naserzadeh P, Salimi A, et al. Toxicity of atorvastatin on pancreas mitochondria: A justification for increased risk of diabetes mellitus. Basic Clin Pharmacol Toxicol. 2017;120(2):131-7. [ DOI:10.1111/bcpt.12656] [ PMID] 25. Shirmard LR, Shabani M, Moghadam AA, Zamani N, Ghanbari H, Salimi A. Protective effect of curcumin, chrysin and thymoquinone injection on trastuzumab-induced cardiotoxicity via mitochondrial protection. Cardiovasc Toxicol. 2022;22(7):663-75. [ DOI:10.1007/s12012-022-09750-w] [ PMID] 26. Eirin A, Lerman A, Lerman LO. The emerging role of mitochondrial targeting in kidney disease. Handb Exp Pharmacol. 2017;240:229-250. [ DOI:10.1007/164_2016_6] [ PMID] [ ] 27. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629-46. [ DOI:10.1038/nrneph.2017.107] [ PMID] [ ] 28. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-54. [ DOI:10.1038/s41556-018-0124-1] [ PMID] [ ] 29. Fisel P, Renner O, Nies AT, Schwab M, Schaeffeler E. Solute carrier transporter and drug-related nephrotoxicity: The impact of proximal tubule cell models for preclinical research. Expert Opin Drug Metab Toxicol. 2014;10(3):395-408. [ DOI:10.1517/17425255.2014.876990] [ PMID] 30. Kwiatkowska E, Domański L, Dziedziejko V, Kajdy A, Stefańska K, Kwiatkowski S. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int J Mol Sci. 2021;22(11):6109. [ DOI:10.3390/ijms22116109] [ PMID] [ ] 31. Gyurászová M, Kovalčíková AG, Renczés E, Kmeťová K, Celec P, Bábíčková J, et al. Oxidative stress in animal models of acute and chronic renal failure. Dis Markers. 2019;2019:8690805. [ DOI:10.1155/2019/8690805] [ PMID] [ ] 32. Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The role of mitochondria in drug-induced kidney injury. Front Physiol. 2020;11:1079. [ DOI:10.3389/fphys.2020.01079] [ PMID] [ ] 33. Ensergueix G, Pallet N, Joly D, Levi C, Chauvet S, Trivin C, et al. Ifosfamide nephrotoxicity in adult patients. Clin Kidney J. 2020;13(4):660-5. [ DOI:10.1093/ckj/sfz183] [ PMID] [ ] 34. Ciarimboli G, Holle SK, Vollenbröcker B, Hagos Y, Reuter S, Burckhardt G, et al. New clues for nephrotoxicity induced by ifosfamide: Preferential renal uptake via the human organic cation transporter . Mol Pharm. 2011;8(1):270-9. [ DOI:10.1021/mp100329u] [ PMID] 35. Ommati MM, Farshad O, Ghanbarinejad V, Mohammadi HR, Khadijeh M, Azarpira N, et al. The nephroprotective role of carnosine against ifosfamide-induced renal injury and electrolytes imbalance is mediated via the regulation of mitochondrial function and alleviation of oxidative stress. Drug Res. 2020;70(1):49-56. [ DOI:10.1055/a-1017-5085] [ PMID] 36. Springate J, Chan K, Lu H, Davies S, Taub M. Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In Vitro Cell Dev Biol Anim. 1999;35(6):314-7. [ DOI:10.1007/s11626-999-0080-y] [ PMID] 37. Wang H-T, Lin J-H, Yang C-H, Haung C-H, Weng C-W, Lin AM-Y, et al. Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells. Oncotarget. 2017;8(41):70406-23. [ DOI:10.18632/oncotarget.19710] [ PMID] [ ] 38. Knouzy B, Dubourg L, Baverel G, Michoudet C. Targets of chloroacetaldehyde-induced nephrotoxicity. Toxicol In Vitro. 2010;24(1):99-107. [ DOI:10.1016/j.tiv.2009.08.026] [ PMID] 39. Rodrigo R, Bosco C. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142(3-4):317-27. [ DOI:10.1016/j.cbpc.2005.11.002] [ PMID] 40. Gorlach S, Fichna J, Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett. 2015;366(2):141-9. [ DOI:10.1016/j.canlet.2015.07.004] [ PMID] 41. Rehman H, Krishnasamy Y, Haque K, Thurman RG, Lemasters JJ, Schnellmann RG, et al. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin A treatment in rats. PLoS One. 2013;8(6):e65029. [ DOI:10.1371/journal.pone.0065029] [ PMID] [ ] 42. Khezri S, Sabzalipour T, Jahedsani A, Azizian S, Atashbar S, Salimi A. Chrysin ameliorates aluminum phosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environ Toxicol. 2020;35(10):1114-24. [ DOI:10.1002/tox.22947] [ PMID] 43. Izuta H, Shimazawa M, Tazawa S, Araki Y, Mishima S, Hara H. Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J Agric Food Chem. 2008;56(19):8944-53. [ DOI:10.1021/jf8014206] [ PMID] 44. Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gülçin İ. Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: A multi-biomarker approach. Sci Pharm. 2017;85(1):4. [ DOI:10.3390/scipharm85010004] [ PMID] [ ] 45. Şimşek H, Akaras N, Gür C, Küçükler S, Kandemir FM. Beneficial effects of chrysin on cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and caspase-3/Bax/Bcl-2 signaling pathways. Gene. 2023;875:147502. [ DOI:10.1016/j.gene.2023.147502] [ PMID] 46. Xu M, Shi H, Liu D. Chrysin protects against renal ischemia reperfusion induced tubular cell apoptosis and inflammation in mice. Exp Ther Med. 2019;17(3):2256-62. [ DOI:10.3892/etm.2019.7189] 47. Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol. 2012;64(6):872-81. [ DOI:10.1111/j.2042-7158.2012.01470.x] [ PMID] 48. Ijaz MU, Jabeen F, Ashraf A, Imran M, Ehsan N, Samad A, et al. Evaluation of possible protective role of chrysin against arsenic-induced nephrotoxicity in rats. Toxin Rev. 2022;41(4):1237-45. [ DOI:10.1080/15569543.2021.1993261] 49. Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose-Response. 2017;15(2):1559325817711782. [ DOI:10.1177/1559325817711782] [ PMID] [ ] 50. Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 2017;92:998-1009. [ DOI:10.1016/j.biopha.2017.06.003] [ PMID] 51. Ileriturk M, Benzer F, Aksu EH, Yildirim S, Kandemir FM, Dogan T, et al. Chrysin protects against testicular toxicity caused by lead acetate in rats with its antioxidant, anti-inflammatory, and antiapoptotic properties. J Food Biochem. 2021;45(2):e13593. [ DOI:10.1111/jfbc.13593] [ PMID]
|