Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran , e.safarzadeh@arums.ac.ir
Abstract: (6 Views)
Background: 5-fluorouracil is one of the chemotherapy drugs that has destructive effects on body tissues such as the heart, liver, kidney, brain and reproductive system in humans and animals. Reproductive dysfunction is considered to be an important side effect of chemotherapy drugs such as 5-fluorouracil (5-FU). This study was designed to assess the effects of Oleuropein (OLE) against 5-FU-induced ovarian toxicity. Methods:24 adult female rats (weighing 200-225 g) were randomly divided into 4 groups (N= 6) with a treatment period of 14 days including the control group, 5-FU (100 mg/kg/week, IP), OLE (200 mg/kg/day, IP), 5-FU + OLE group, administrated 5-FU (100 mg/kg/week) with OLE (200 mg/kg/day). After treatment, blood samples were collected for the measurement of female sexual hormones, and ovarian samples were taken for histological assessment. Results: 5-FU significantly decreased female sexual hormones. Also, it caused tissue damage in the ovary, as 5-FU-administered rats had degenerated follicles and hemorrhage. While the administration of OLE significantly increased the estradiol, and progesterone (p< 0.05) levels and improved ovarian pathological changes. Conclusion: Oleuropein reduces 5-fluorouracil –induced reproductive toxicity in female rats.
Type of Study: article |
Subject: Physiology Received: 2024/12/25 | Accepted: 2025/03/4
References
1. Timar M, Banaei S. Protective effect of saponin on sperm DNA fragmentation of mice treated with cyclophosphamide. Andrologia. 2022;54(2):e14336. [DOI:10.1111/and.14336] [PMID]
2. Golmohammadi MG, Banaei S, Timar M, Abedi A. Saponin protects against cyclophosphamide-induced kidney and liver damage via antioxidant and anti-inflammatory actions. Physiol Int. 2023;110(2):108-120. [DOI:10.1556/2060.2023.00190] [PMID]
3. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330-8. [DOI:10.1038/nrc1074] [PMID]
4. Tanaka F, Fukuse T, Wada H, Fukushima M. The history, mechanism and clinical use of oral 5-fluorouracil derivative chemotherapeutic agents. Curr Pharm Biotechnol. 2000;1(2):137-64. [DOI:10.2174/1389201003378979] [PMID]
5. Chalabi-Dchar M, Fenouil T, Machon C, Vincent A, Catez F, Marcel V, et al. A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR cancer. 2021;3(3):zcab032. [DOI:10.1093/narcan/zcab032] [PMID] []
6. Chibber S, Farhan M, Hassan I, Naseem I. White light-mediated Cu (II)-5FU interaction augments the chemotherapeutic potential of 5-FU: an in vitro study. Tumor Biol. 2011;32:881-92. [DOI:10.1007/s13277-011-0189-y] [PMID]
7. Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon Jr, et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26(13):2131-8. [DOI:10.1200/JCO.2006.10.4182] [PMID]
8. Alter P, Herzum M, Soufi M, Schaefer J, Maisch B. Cardiotoxicity of 5-fluorouracil. Cardiovasc Hematol Agents Med Chem. 2006;4(1):1-5. [DOI:10.2174/187152506775268785] [PMID]
9. Kimura Y, Okuda H. Prevention by chitosan of myelotoxicity, gastrointestinal toxicity and immunocompetent organic toxicity induced by 5‐fluorouracil without loss of antitumor activity in mice. Jpn J Cancer Res. 1999;90(7):765-74. [DOI:10.1111/j.1349-7006.1999.tb00813.x] [PMID] []
10. Al‐Khrashi LA, Badr AM, AL‐Amin MA, Mahran YF. Thymol ameliorates 5‐fluorouracil‐induced intestinal mucositis: Evidence of down‐regulatory effect on TGF‐β/MAPK pathways through NF‐κB. J Biochem Mol Toxicol. 2022;36(1):e22932. [DOI:10.1002/jbt.22932] [PMID]
11. Noorbakhsh MF, Ahmadi N, Nazifi S, Nikravesh A-A, Hosseini Fard SE. The protective effects of silymarin in 5-fluorouracil-ınduced hepatotoxicity and nephrotoxicity in rats. Iran Vet J. 2022;18(3):103-13.
12. Safarpour S, Pirzadeh M, Ebrahimpour A, Shirafkan F, Madani F, Hosseini M, et al. Protective effect of kaempferol and its nanoparticles on 5-fluorouracil-induced cardiotoxicity in rats. Biomed Res Int. 2022:2273000. [DOI:10.1155/2022/2273000] [PMID] []
13. Safarpour S, Safarpour S, Moghadamnia AA, Kazemi S, Ebrahimpour A, Shirafkan F, et al. Cardioprotective effect of silymarin nanoemulsion on 5‐fluorouracil‐induced cardiotoxicity in rats. Arch Pharm (Weinheim). 2022;355(7):e2200060. [DOI:10.1002/ardp.202200060] [PMID]
14. Rishmawi S, Haddad F, Dokmak G, Karaman R. A Comprehensive Review on the Anti-Cancer Effects of Oleuropein. Life. 2022;12(8):1140. [DOI:10.3390/life12081140] [PMID] []
15. Romero-Márquez JM, Navarro-Hortal MD, Jiménez-Trigo V, Vera-Ramírez L, Forbes-Hernández TJ, Esteban-Munoz A, et al. An oleuropein rich-olive (Olea europaea L.) leaf extract reduces β-amyloid and tau proteotoxicity through regulation of oxidative-and heat shock-stress responses in Caenorhabditis elegans. Food Chem Toxicol. 2022:162:112914. [DOI:10.1016/j.fct.2022.112914] [PMID]
16. Hadrich F, Mahmoudi A, Chamkha M, Isoda H, Sayadi S. Olive leaves extract and oleuropein improve insulin sensitivity in 3T3-L1 cells and in high-fat diet-treated rats via PI3K/AkT signaling pathway. Oxid Med Cell Longev. 2023:6828230. [DOI:10.1155/2023/6828230] [PMID] []
17. Menezes RCR, Peres KK, Costa-Valle MT, Faccioli LS, Dallegrave E, Garavaglia J, et al. Oral administration of oleuropein and olive leaf extract has cardioprotective effects in rodents: A systematic review. Rev Port Cardiol. 2022;41(2):167-175. [DOI:10.1016/j.repc.2021.05.011] [PMID]
18. Pojero F, Aiello A, Gervasi F, Caruso C, Ligotti ME, Calabrò A, et al. Effects of oleuropein and hydroxytyrosol on inflammatory mediators: Consequences on inflammaging. Int J Mol Sci. 2022 26;24(1):380. [DOI:10.3390/ijms24010380] [PMID] []
19. Geyikoglu F, Emir M, Colak S, Koc K, Turkez H, Bakir M, et al. Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury. J Food Drug Anal. 2017;25(2):447-459. [DOI:10.1016/j.jfda.2016.07.002] [PMID] []
20. Stringer JM, Swindells EO, Zerafa N, Liew SH, Hutt KJ. Multidose 5-fluorouracil is highly toxic to growing ovarian follicles in mice. Toxicol Sci. 2018;166(1):97-107. [DOI:10.1093/toxsci/kfy189] [PMID]
21. Naren G, Wang L, Zhang X, Cheng L, Yang S, Yang J, et al. The reversible reproductive toxicity of 5-fluorouracil in mice. Reprod Toxicol. 2021;101:1-8. [DOI:10.1016/j.reprotox.2021.02.002] [PMID]
22. Demir EA, Mentese A, Demir S, Kucuk H, Turkmen N, Aliyazicioglu Y. Evaluation of therapeutic effect of chrysin against 5-Fluorouracil-induced ovarian damage in rats. Farabi Tıp Dergisi .2023;2(1):1-7.
23. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94 Suppl 161:8-16. [DOI:10.1111/aogs.12771] [PMID]
24. Sinchak K, Wagner EJ. Estradiol signaling in the regulation of reproduction and energy balance. Front Neuroendocrinol. 2012;33(4):342-63. [DOI:10.1016/j.yfrne.2012.08.004] [PMID] []