|
|
|
|
Search published articles |
|
|
Showing 2 results for Tissue Engineering
Reza Najafi, Asadollah Asadi, Saber Zahri, Arash Abdolmaleki, Volume 22, Issue 1 (4-2022)
Abstract
Background & objectives: Tissue engineering is a growing field to repair and replace the defective function of damaged tissue or organ, and today it is proposed as a new treatment to replace conventional transplant methods. For this purpose, polymeric biomaterials (scaffolds) and living cells are used. The purpose of this study is to fabricate polycaprolactan (PCL) nanoscaffold and load silymarin on the nanoscaffold to check the biocompatibility and proliferation ability of pc12 cells on it.
Methods: In order to prepare polycaprolactan nanoscaffold and load silymarin on it, 7% polycaprolactan solution (dissolved in acetic acid) was mixed with silymarin solution with a concentration of 0.9% (weight percent), and then the scaffold was prepared using electrospinning device. The morphology of the scaffold was evaluated by scanning electron microscope (SEM) and the chemical structure of the scaffold was evaluated by ATR-FTIR spectroscopy. Toxicity of the scaffold and cell survival of PC12 cells were investigated by MTT test and SEM microscope respectively.
Results: Examining the morphology of the scaffold and its chemical structure showed the appropriate porosity of the scaffold and the successful loading of silymarin on the PCL scaffold. The toxicity of the scaffold was investigated 24, 48 and 72 hours after the cultivation of PC12 cells, and the results showed an increase in cell viability and proper attachment of cells on the scaffold.
Conclusion: The results of this research showed that the loading of silymarin on polycaprolactan scaffold increases the proliferation and survival of PC12 cells. Therefore, this scaffold can be a suitable candidate for nerve tissue engineering.
Aida Nahumi, Maryam Peymani, Asadollah Asadi, Arash Abdolmaleki, Yasin Panahi, Mohammad Ali Shahmohammadi, Volume 23, Issue 4 (1-2024)
Abstract
Background: Identifying protein interactions is one of the main challenges in the fields of biostructure and molecular biology. Despite extensive progress, the exact patterns of protein-protein interactions are still unknown. The main goal of this study is to computationally evaluate the interactions of fibronectin-1 in the extracellular matrix of decellularized trachea and integrins in adipose tissue stem cells in order to provide the most accurate possible visualization of these interactions and their role in biological processes.
Methods: After decellularization of the sheep trachea through the detergent-enzyme method, histological evaluations and ultrastructure photography of the samples were done by scanning electron microscopy. Also, the simulations of fibronectin1 binding of extracellular matrix protein with integrin αvβ1 and α5β3 of stem cells derived from adipose tissue were investigated, and interaction energy analysis was applied to predict the structure of protein-protein complexes using the algorithms available in HDOCK and ClusPro servers.
Results: The findings indicated the preservation of extracellular matrix components and scaffold ultrastructure. Also, in order to find the most favorable connection states in terms of energy, some of them were reported as stable interactions among the top types of connections. This insight provides a valuable understanding of cell-matrix adhesion, migration, and signaling, with potential implications for therapeutic development.
Conclusion: The prepared scaffolds are ideal for engineering applications for which computational analysis and experimental data have been used for visualization of stable connection states with energy efficiency between fibronectin and integrin. Also, more studies on cell adhesion modeling in connection with tissue engineering science can provide a suitable field for the development of regenerative medicine in further studies.
|
|
|
|
|
|