[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Search published articles ::
Showing 2 results for Ischemia-Reperfusion

Miss Neda Omidian, Houshang Najafi,
Volume 20, Issue 4 (1-2021)
Abstract

 
Background & objectives: One of the most important causes of acute kidney injury is ischemia-reperfusion (IR). Some studies have shown that adenosine A1 receptor inhibition have protective effects against Ischemia–reperfusion induced renal injuries, while other studies have demonstrated the opposite. The aim of the present study was to review the methodology of these studies to reach a final conclusion about the effects of adenosine A1 receptor on ischemia-reperfusion-induced renal injuries.
Methods: Data base motors including Scopus, PubMed, Google Scholar, Science Direct and Embase were searched. The terms and keywords used included ischemia-reperfusion, acute kidney injury, acute renal failure, A1 adenosine receptor and their combination.
Results: Increased adenosine levels following renal Ischemia-reperfusion cause vasoconstriction in afferent arteriole and vasodilatation in efferent arteriole through A1 adenosine receptor activation, which in turn reduces glomerular filtration rate (GFR). Inhibition of A1 adenosine receptor leads to short-term correction of renal functional parameters following renal Ischemia-reperfusion, by increasing renal blood flow and thus improving GFR. But this increase in GFR exacerbates kidney damages through the kidneys workload enhancement, which will show up in the next few hours.
Conclusions: Although selective inhibition of A1 adenosine receptor in the short term improves renal function parameters, but exacerbates renal damages in the following hours. Therefore, adenosine A1 receptor stimulation has protective effects against IR-induced kidney injury.
Shokofeh Banaei,
Volume 21, Issue 4 (1-2022)
Abstract

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effects of nanoparticles in AKI.
Methods: A comprehensive search strategy was identified relevant studies on AKI models, using the Scopus, PubMed and Google Scholar databases, from 2000 until 2020. The search strategy included keywords like ischemia-reperfusion and nanoparticles.
Results: Oxygen free radicals are produced during the reperfusion phase, which cause lipid peroxidation and promote tissue damage. Oxidative damage to DNA and proteins and lipid membrane peroxidation can cause cell death and apoptosis. Some strategies to reduce the tissue damage caused by ischemia-reperfusion are nanoscale materials. Antioxidant nanoparticles reduce oxidative stress in tissues. Also, they have flexibility in the delivery of therapeutic agents and drugs to the ischemic cells, and imaging of the ischemic regions at the molecular or cellular level.
Conclusion: This potential of antioxidant and anti-inflammatory nanoparticles in the diagnosis and treatment of renal ischemic regions is an innovation in the development of new therapies and a unique achievement in recent medical advances.
 

Page 1 from 1     

مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.21 seconds with 30 queries by YEKTAWEB 4623