[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Search published articles ::
Showing 4 results for Electromagnetic Field

Shirin Babri , Naser Khalajy ,
Volume 6, Issue 4 (12-2006)
Abstract

  Background & Objectives : Piracetam is a nootropic compound, which acts as a nervous system enhancer. Different processes are involved in memory formation and various parameters are able to disturb it. Due to increase of exposure possibility to electromagnetic fields in recent years and the effects of theses fields on memory consolidation, this investigation designed to clear the relation between these parameters and memory consolidation.

  Methods: In this research eleven groups of male wistar rats (ten rats in each group) with a mean weight of 275±25 gr aging 3-4 months were studied. To evaluate the effects of electromagnetic field, four groups of rats were exposed to 5mT/50HZ electromagnetic field for 1,4,6 and 8 hours respectively immediately after training. In other six groups 250mg/kg or 500 mg/kg piracetam were administered orally one hour before training. They were also exposed to electromagnetic field for 4,6,8 hours respectively immediately after training,. Retrieval test was performed 24 hours later in all groups.

  Results: 1 hour exposure on EMF had no meaningful effect on memory consolidation, however, in other three groups the electromagnetic fields impaired memory consolidation significantly compared to the control group (p<0.05). Piracetam administration with two mentioned doses significantly improved memory consolidation (p<0.05).

  Conclusions: Acute exposure to low intensity magnetic field can disturb memory consolidation and piracetam administration can prevent it.


Saeid Nafisi , Seyed Shamsaddin Athari , Reza Kazemi , Ehsan Hosseini ,
Volume 9, Issue 4 (12-2009)
Abstract

 Background and objectives: During the last years the effects of pulsative electromagnetic fields have been studied in the human and animals nervous system. The using of these fields in today living has caused worriment in safety of human. Stress causes very problems in behavior and function of biological systems. In this survey the effects of electromagnetic fields on stress behaviors of rats have been studied.

 Methods: In this study we aimed to investigate the effects of electromagnetic fields with 700 milli Gauss currency produced by triangle electrical currents with low (10 Hz) and high (110 kHz) frequencies on stress behaviors in 60 adult, male Wistar rats. The rats were divided to two groups of control and test. The animals were exposed to the field for 80 minutes and in order to evaluate the possible effect of electromagnetic fields the Tail pinch (T.P.) test was conducted. The results were analyzed using statistical tests.

  Results: Analyzing of the results of response time and stress behavior by T-test. In the group exposed electromagnetic fields of triangular low waves (10 Hz) for 80 min the results were meaningful (p < 0.05). The response and stressed behavior with this field is decreased very much. The results of two groups after 80 min under this field that have a difference in frequency showed that effects of frequency in behavior was meaningless.

  Conclusion: The results of this study showed that electromagnetic fields produce anti-stress effect in rats. The radio waves (A.W) have higher effects.


Homayoun Ebrahimian, Seyied Mohammad Firoozabadi, Mahyar Janahmadi, Mehri Kaviani Moghadam,
Volume 13, Issue 2 (7-2013)
Abstract

  Background & Objectives: The development of technology has naturally given rise to an increase in environmental low-frequency electromagnetic fields and consequently has attracted scholars' attention. Most of the studies have focused on transmission lines and power system distribution with 50 Hz. This research is an attempt to show the effect of 50 Hz magnetic fields on bioelectric parameters and indicates the possible influence of this change in F1 cells of Helix aspersa .

  Methods: The present research used Helix aspersa neuron F1 to identify the location of magnetic fields as well as the rate of effects of environmental magnetic fields on nervous system. Control group was used to study the effect of elapsed time, electrode entering and the cell membrane rupture. Intuition group and environmental group were considered in order to study the potential impact of interfering environmental factors and identify the effectiveness rate of magnetic fields, respectively. For the purpose of producing uniform magnetic field Helmholtz coil was used. Electrophysiological recording was realized under the requirements of current clamp. And, in order to show the impacts from magnetic fields on ion channels Hodgkin-Huxley cell model was applied. All data were analyzed taking the advantage of SPSS 16 software and two-way ANOVA statistical test. P < 0.05 was considered as significance level. And MATLAB software environment and PSO were used in order for applying the algorithm and estimating the parameters.

  Result: No statistically significant difference was found between control and sham groups in different time intervals. Once the 45.87 microtesla was applied significant differences were observed 12 minutes after the application. The highest amount of change happened 14 minutes after the application of more fields. With the application of the field, the amplitude of the sodium action potential shows decreasing trend . No significant changes were observed in different time intervals, whereas significant differences were seen in frequency of action potential during different time intervals. The amplitude of AHP shows no significant changes .

  Conclusion: The results indicated that low-frequency magnetic fields with 50 Hz frequency will directly lead to change in bioelectric activities of neurons through a change in amount and rate of opening and closing of ionic channels and the conductivity of sodium and potassium channels reduces together with increase in conductance of potassium dependent calcium channel (AHP).


Touraj Rahmani , Farid Bahrpeyma, Manoochehr Iranparvar , Mohammad Taghikhani ,
Volume 14, Issue 3 (10-2014)
Abstract

  Background & objectives: Type 2 diabetes mellitus results in vascular dysfunction and reduction of nitric oxide (NO) level. In this study the effect of electromagnetic field (EMF) on NO level, an effective factor in increasing blood flow, and on ankle brachial index (ABI) as a n index of lower extremity blood flow in type 2 diabetic patients, have been investigated.

  Methods: This study was a randomized controlled clinical trial carried out in Imam Khomeini hospital of Ardabil and Mehr physiotherapy center in 2013. Thirty diabetic patients after initial pilot study participated in this experiment based on inclusion and exclusion criteria. Then, they were randomly assigned into two equal groups, electromagnetic therapy and control. The baseline levels of ABI and NO of both groups were measured. Patients in electromagnetic group were exposed to 10 Hz EMF radiation (with intensity of 8 mT) together with scanning lower limbs (three sessions per week, and 40 minutes per session for 8 weeks). The control group did not receive any treatment. After eight weeks, the amount of ABI and NO level were recorded. For statistical analysis paired t-test and independent t-test were used in SPSS 19 software.

  Results: Statistical analysis showed significant differences between pre (1.009±0.02) and post (1.052±0.02) measurement of ABI of diabetic patient after applying magnetic field ( P = 0.013). However, there was no significant difference between p and after measurement of ABI and NO level in controlgroup and also NO level in magnet groups ( P> 0.05). Difference between pre and post therapy of ABI in electromagnetic group (0.05±0.01) showed significant increase compared with control group (0.004±0.003) ( P = 0.001).

  Conclusion: Increase in ABI after 8 weeks electromagnetic therapy could be considered as an accretion index in blood flow in lower extremity.



Page 1 from 1     

مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.17 seconds with 32 queries by YEKTAWEB 4623