[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Search published articles ::
Showing 2 results for Hasani

Mohammadreza Nahaei , Reza Bohloli Khiavi , Mohammad Asgarzadeh, Alka Hasani , Javid Sadeghi, Mohammad Akbari Dibavar ,
Volume 7, Issue 1 (spring 2007)
Abstract

  Background and Objectives: Pseudomonas aeruginosa is a nosocomial pathogen that presents high antibiotic resistance.There are phenotyping and genotyping methods for epidemiologic study of Pseudomonas aeruginosa such as antibiotic resistance pattern and plasmid profile analysis. Plasmid analysis provides useful information concerning the source of the strains and number of clones present in the epidemies. Thus, this study was conducted to evaluate antibiotic and plasmid profiles of P. aeruginosa strains isolated from in-patients of the Sina Medical Centre of Tabriz to clarify epidemyological correlation among isolated strains.

  Methods: During 13 months, 135 strains of P. aeruginosa were isolated from different infections in hospitalized patients at Sina Medical Center of Tabriz. Antibiotic susceptibility tests were performed using disc agar diffusion test. For plasmid DNA extraction and detection of open circular bands from supercoiled ones, modified alkaline lysis procedure and two dimensional electrophoresis were used, respectively. Enzymatic digestion of plasmids was carried out by EcoRI and HincII restriction enzymes.

  Results: Resistance rates of strains against antibacterial agents were recorded as: Aztreonam (77%), colistin (74%), ceftazidime (69%), pipracillin (67%), ofloxacin (62%), tobramycin (56%), carbenicillin (54%), gentamicin (51%), ciprofloxacin (22%), amikacin (15%), polymixin B (13%) and imipenem (2%). Plasmid profiles of our test strains revealed that only 67 strains harbored plasmid(s). Number of isolated plasmids ranged 1-6 in each strain with molecular mass of 0.5kb-21kb. When the isolated plasmids were digested using restriction endonuclease enzymes (EcoRI and HincII), in 32% of them similar digestion profiles were obtained by EcoRI indicating a unique source for them.

  Conclusion : Our findings suggest high antibiotic resistance and plasmid presence in P. aeruginosa strains isolated from different infections, and there were remarkable similarities among isolated plasmids. Since our test strains had been isolated from various wards in a short period of time, the results raise the possibility of unique source for some strains or high prevalence of genetic exchange among P. aeruginosa strains.


Roqiyeh Nouri, Mohammad Ahangarzadeh Rezaee , Alka Hasani, Mohammad Aghazadeh, Mohammad Asgharzadeh, Morteza Ghojazadeh,
Volume 16, Issue 2 (summer 2016)
Abstract

Background & objectives: Fluoroquinolones have important role in treatment of P. aeruginosa infections. The main mechanism of fluoroquinolones resistance in P. aeruginosa is mutations in the quinolone-resistance-determining region (QRDR) of gyrA and parC genes. The aim of this study was to investigate the role of these mutations in ciprofloxacin resistance in different clinical isolates of P. aeruginosa.

Methods: A total of 75 clinical P. aeruginosa isolates were collected from different university-affiliated hospitals in Tabriz. Minimum inhibitory concentrations (MICs) of ciprofloxacin were evaluated by Etest assay. DNA sequences of the QRDR of gyrA and parC were determined by dideoxy chain termination method.

Results: From 75 isolates, 77.33% were resistant to ciprofloxacin. No amino acid changes were detected in gyrA or parC genes of the ciprofloxacin susceptible isolates. Thr-83→Ile substitution in gyrA was observed in all ciprofloxacin resistant isolates. About 90% of them had Ser-87→Leu substitution in parC. Geometric mean MICs of ciprofloxacin were different for various clinical isolates of P. aeruginosa which had the same situation in type and location of gyrA and parC mutations. Moreover, the geometric mean MIC in isolates from urine was significantly (p<0.05) higher than isolates from tracheal aspirates.

Conclusion: Mutations in gyrA and parC genes are the major mechanisms for ciprofloxacin resistance in clinical isolates of P. aeruginosa. Moreover, the role of different effective factors in fluoroquinolone resistance can be different in various clinical isolates of P. aeruginosa.



Page 1 from 1     

مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.25 seconds with 30 queries by YEKTAWEB 4623