Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran , f.khademi@arums.ac.ir
Abstract: (331 Views)
Background: Antibiotic resistance represents a critical global concern within the medical community, posing significant challenges in the treatment of infections caused by drug-resistant pathogens. Over the years, broad-spectrum fluoroquinolones have been extensively used to treat infections caused by both Gram-positive and Gram-negative bacteria, including Pseudomonas aeruginosa. In this study, we decided to assess the prevalence of plasmid-mediated quinolone resistance mechanisms among clinical isolates of P. aeruginosa in Ardabil hospitals. Methods: We analyzed a total of 200 clinical isolates of P. aeruginosa, collected between June 2019 and May 2023. The antibiotic resistance profiles of these strains against various fluoroquinolone antibiotics were determined using the disk diffusion method. Additionally, we investigated the presence of qnrA, qnrB, qnrC, qnrD, and qnrS genes through polymerase chain reaction (PCR) analysis. Furthermore, we assessed the expression levels of efflux pump genes and outer membrane porin genes using the quantitative reverse transcription PCR (qRT-PCR) in fluoroquinolone-resistant P. aeruginosa strains. Results: Our findings revealed that 69% of P. aeruginosa strains were resistant to fluoroquinolones. The resistance rates for different fluoroquinolones were as follows: ciprofloxacin 55.5%, ofloxacin 62%, norfloxacin 53.5%, lomefloxacin 55.3%, and levofloxacin 55.5%. Notably, 78.9% of these strains exhibited multidrug resistance (MDR). Among the qnr genes, qnrB was the most prevalent (2.9%). No other qnr genes were identified. Interestingly, 75% of P. aeruginosa strains carrying the qnrB gene showed overexpression of efflux pump genes, while 100% exhibited down-regulation of the oprD gene. Conclusion: Given the high prevalence of fluoroquinolone-resistant P. aeruginosa clinical isolates in Ardabil hospitals and the multifactorial nature of resistance, continuous monitoring of antibiotic resistance trends and understanding the underlying resistance mechanisms are crucial for selecting appropriate treatment strategies.
Type of Study: article |
Subject: Microbiology Received: 2024/03/2 | Accepted: 2024/05/30 | Published: 2024/07/25
References
1. Bazghandi SA, Safarirad S, Arzanlou M, Peeri-Dogaheh H, Ali-Mohammadi H, Khademi F. Prevalence of multidrug-resistant Pseudomonas aeruginosa strains in Ardabil. J Ardabil Univ Med Sci. 2020;20(2):280-6. [Full text in Persian] [DOI:10.52547/jarums.20.2.280]
2. Bazghandi SA, Arzanlou M, Peeridogaheh H, Vaez H, Sahebkar A, Khademi F. Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur J Microbiol. 2021;14(8):1-7. [DOI:10.5812/jjm.118452]
3. Khademi F, Maarofi K, Arzanlou M, Peeri-Dogaheh H, Sahebkar A. Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil?. Gene Rep. 2021;24:101211. [DOI:10.1016/j.genrep.2021.101211]
4. Khademi F, Ashrafi SS, Neyestani Z, Vaez H, Sahebkar A. Prevalence of class I, II and III integrons in multidrug-resistant and carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Gene Rep. 2021;25:101407. [DOI:10.1016/j.genrep.2021.101407]
5. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438-45. [DOI:10.1016/j.tim.2014.04.007] [PMID]
6. Yang X, Xing B, Liang C, Ye Z, Zhang Y. Prevalence and fluoroquinolone resistance of Pseudomonas aeruginosa in a hospital of South China. Int J Clin Exp Med. 2015;8(1):1386.
7. Saki M, Farajzadeh Sheikh A, Seyed-Mohammadi S, Asareh Zadegan Dezfuli A, Shahin M, Tabasi M, et al. Occurrence of plasmid-mediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: a multicentral study. Sci Rep. 2022;12(1):2296. [DOI:10.1038/s41598-022-06128-4] [PMID] []
8. CLSI. Performance standards for antimicrobial susceptibility testing. 31th ed. Wayne, USA: Clinical and Laboratory Standards Institute; 2023. Available from: https://webstore.ansi.org/standards/clsi/clsim100ed31?gad_source=1&gclid=CjwKCAjw34qzBhBmEiwAOUQcF_X3clYuNfv_8czNc9HxFJmfu9YdDd7GusT0aKzjgy5nluR9x77kHxoCF7sQAvD_BwE
9. Neyestani Z, Khademi F, Teimourpour R, Amani M, Arzanlou M. Prevalence and mechanisms of ciprofloxacin resistance in Escherichia coli isolated from hospitalized patients, healthy carriers, and wastewaters in Iran. BMC Microbiol. 2023;23(1):191. [DOI:10.1186/s12866-023-02940-8] [PMID] []
10. Yousefi S, Nazari M, Ramazanzadeh R, Sahebkar A, Safarzadeh E, Khademi F. Association of carbapenem and multidrug resistance with the expression of efflux pump-encoding genes in Pseudomonas aeruginosa clinical isolates. Acta Microbiol Immunol Hung. 2023;70(2):161-6. [DOI:10.1556/030.2023.02029] [PMID]
11. Nazari M, Ahmadi H, Hosseinzadeh S, Sahebkar A, Khademi F. Imipenem resistance associated with amino acid alterations of the OprD porin in Pseudomonas aeruginosa clinical isolates. Acta Microbiol Immunol Hung. 2023;70(3):206-212. [DOI:10.1556/030.2023.02060] [PMID]
12. Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS ONE. 2012;7(8):e42973. [DOI:10.1371/journal.pone.0042973] [PMID] []
13. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and metaanalysis. J Global Infect Dis. 2018;10:212-7. [DOI:10.4103/jgid.jgid_113_17] [PMID] []
14. Michalska AD, Sacha PT, Ojdana D, Wieczorek A, Tryniszewska E. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Braz J Microbiol. 2014;45:1455-8. [DOI:10.1590/S1517-83822014000400041] [PMID] []
15. Molapour A, Peymani A, Saffarain P, Habibollah-Pourzereshki N, Rashvand P. Plasmid-mediated quinolone resistance in Pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Infect Disord Drug Targets. 2020;20(1):49-55. [DOI:10.2174/1871526519666190206205521] [PMID]
16. Askoura M, Mottawea W, Abujamel T, Taher I. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med. 2011;6(1):1-8. [DOI:10.3402/ljm.v6i0.5870] [PMID] []
17. Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram‐negative bacteria: insights from the Society of Infectious Diseases Pharmacists. Pharmacother. 2003;23(7):916-24. [DOI:10.1592/phco.23.7.916.32722] [PMID]
Nazari M, Saeli N, Arzanlou M, Jafari-Ramedani S, Mirzanejad-Asl H, Khademi F et al . Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Pseudomonas aeruginosa Clinical Strains in Northwest Iran. J Ardabil Univ Med Sci 2024; 24 (1) : 4 URL: http://jarums.arums.ac.ir/article-1-2381-en.html