[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي مقالات آماده انتشار آخرين شماره تمام شماره‌ها جستجو ثبت نام ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات مجله::
هیات تحریریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
خط مشی دبیری::
ثبت نام و اشتراک::
تماس با ما::
بانک ها و نمایه ها::
::
شاپا
شاپاچاپی  
2228-7280
شاپا الکترونیکی
2228-7299
..
بانک ها و نمایه ها

 

 

 

 

 

 
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
لینک مفید بر ای داوران

سرقت ادبی وعلمی فارسی

سرقت ادبی وعلمی لاتین

..
دسترسی آزاد
مقالات این مجله با دسترسی آزاد توسط دانشگاه علوم پزشکی اردبیل تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
 
..
:: دوره 25، شماره 2 - ( تابستان 1404 ) ::
جلد 25 شماره 2 صفحات 146-118 برگشت به فهرست نسخه ها
مروری بر اثر RNAهای غیرکدکننده اگزوزوم‌ها بر توسعه تومورهای بدخیم روده
پرهام منصوری ، داریوش شانه‌بندی*
مرکز تحقیقات ایمونولوژی سرطان و ایمونوتراپی، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران ، shanebandid@tbzmed.ac.ir
چکیده:   (262 مشاهده)
سرطان کولورکتال (CRC) به عنوان یکی از شایع‌ترین سرطان‌های دستگاه گوارش، با چالش‌های مهمی در تشخیص و درمان مواجه است. در سال‌های اخیر، اگزوزوم‌ها و محتوای RNA غیرکدکننده (ncRNA) آن­ها توجه محققان را به عنوان عوامل کلیدی در پیشرفت تومور و ابزارهای تشخیصی نوین جلب کرده‌اند. اگزوزوم‌ها، وزیکول‌های خارج سلولی با اندازه 50-150 نانومتر هستند که توسط سلول‌های نرمال و سرطانی ترشح شده و در انتقال سیگنال‌های بین سلولی نقش دارند. این مطالعه مروری به بررسی نقش miRNAها، lncRNAها و circRNAهای اگزوزومی در مکانیسم‌های سرطان‌زایی از جمله رگزایی، متاستاز، مقاومت دارویی و تعدیل سیستم ایمنی می‌پردازد. یافته‌ها نشان می‌دهند که محتوای ncRNAهای اگزوزومی می‌توانند به عنوان نشانگرهای زیستی حساس و اختصاصی برای تشخیص زودهنگام، پیش‌آگهی و پایش پاسخ به درمان مورد استفاده قرار گیرند. با این حال، چالش‌هایی مانند روش‌های استاندارد جداسازی اگزوزوم‌ها و نیاز به مطالعات بالینی گسترده‌تر هنوز وجود دارد. توسعه فناوری‌های نوین در این حوزه می‌تواند راه را برای کاربرد بالینی این یافته‌ها در پزشکی شخص‌محور هموار کند. این مقاله مروری بر اهمیت روزافزون ncRNAهای اگزوزومی در درک پاتوژنز CRC و پتانسیل بالینی آنها به عنوان ابزارهای تشخیصی و درمانی تمرکز دارد.
شماره‌ی مقاله: 1
واژه‌های کلیدی: اگزوزوم‌، RNAهای غیر کدکننده، سرطان کولورکتال، نشانگرهای زیستی، ریزمحیط تومور
متن کامل [PDF 1834 kb]   (125 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: هماتولوژی و انکولوژی
دریافت: 1404/5/14 | پذیرش: 1404/7/6 | انتشار: 1404/9/1
فهرست منابع
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. [DOI:10.3322/caac.21660] [PMID]
2. Filip S, Vymetalkova V, Petera J, Vodickova L, Kubecek O, John S, et al. Distant metastasis in colorectal cancer patients-do we have new predicting clinicopathological and molecular biomarkers? A comprehensive review. Int J Mol Sci. 2020;21(15):5255. [DOI:10.3390/ijms21155255] [PMID] []
3. Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015; 368(1): 7-13. [DOI:10.1016/j.canlet.2015.07.039] [PMID]
4. Bakhshandeh S, Werner C, Fratzl P, Cipitria A. Microenvironment-mediated cancer dormancy: Insights from metastability theory. Proc Natl Acad Sci U S A. 2022; 119(1): e2111046118. [DOI:10.1073/pnas.2111046118] [PMID] []
5. Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol. 2017;35:12-19. [DOI:10.1016/j.coph.2017.05.004] [PMID]
6. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359-1370. [DOI:10.1038/nm.2537] [PMID]
7. Mezher M, Abdallah S, Ashekyan O, Al Shoukari A, Choubassy H, Kurdi A, et al. Insights on the biomarker potential of exosomal non-coding RNAs in colorectal cancer: An in silico characterization of related exosomal lncRNA/circRNA-miRNA-target axis. Cells. 2023;12(7):1081. [DOI:10.3390/cells12071081] [PMID] []
8. Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, et al. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett. 2022;27:74. [DOI:10.1186/s11658-022-00377-x] [PMID] []
9. Wu Q, Liu W, Wang J, Zhu L, Wang Z, Peng Y. Exosomal noncoding RNAs in colorectal cancer. Cancer Lett. 2021;493:123-134. [DOI:10.1016/j.canlet.2020.08.037] [PMID]
10. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. [DOI:10.3390/cells8070727] [PMID] []
11. Rezaie J, Ahmadi M, Ravanbakhsh R, Mojarad B, Mahbubfam S, Shaban SA, et al. Tumor-derived extracellular vesicles: The metastatic organotropism drivers. Life Sci. 2021;278:120216. [DOI:10.1016/j.lfs.2021.120216] [PMID]
12. Crescitelli R, Lässer C, Lötvall J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc. 2021;16:1548-1580. [DOI:10.1038/s41596-020-00466-1] [PMID]
13. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654-659. [DOI:10.1038/ncb1596] [PMID]
14. Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D & Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal. 2024;22:527. [DOI:10.1186/s12964-024-01906-1] [PMID] []
15. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2020;38:1485-1497.
16. Osaki M, Okada F. Exosomes and their role in cancer progression. Yamato J Med. 2019;1(1):1-5.
17. Aslan C, Maralbashi S, Kahroba H, Asadi M, Soltani-Zangbar MS, Javadian M, et al. Docosahexaenoic acid (DHA) inhibits pro-angiogenic effects of breast cancer cells via down-regulating cellular and exosomal expression of angiogenic genes and microRNAs. Life Sci. 2020;260:118094. [DOI:10.1016/j.lfs.2020.118094] [PMID]
18. Safaei S, Fadaee M, Farzam OR, Yari A, Poursaei E, Aslan C, et al. Exploring the dynamic interplay between exosomes and the immune tumor microenvironment: implications for breast cancer progression and therapeutic strategies. Breast Cancer Res. 2024;26:57. [DOI:10.1186/s13058-024-01810-z] [PMID] []
19. Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21:207. [DOI:10.1186/s12943-022-01671-0] [PMID] []
20. Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol. 2021;22:560-570. [DOI:10.1038/s41590-021-00899-0] [PMID] []
21. Pasquinelli A. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271-282. [DOI:10.1038/nrg3162] [PMID]
22. Peláez N, Carthew RW. Biological robustness and the role of microRNAs: a network perspective. In: Coller HA, editor. MicroRNAs in Development. San Diego: Academic Press; 2012. p. 145-162. [DOI:10.1016/B978-0-12-387038-4.00009-4] [PMID] []
23. Zhao C, Sun X, Li L. Biogenesis and function of extracellular miRNAs. ExRNA. 2019;1:38. [DOI:10.1186/s41544-019-0039-4]
24. Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, et al. Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res. 2020;39:67. [DOI:10.1186/s13046-020-01570-6] [PMID] []
25. Hunter S, Nault B, Ugwuagbo KC, Maiti S, Majumder M. Mir526b and Mir655 promote tumour associated angiogenesis and lymphangiogenesis in breast cancer. Cancers. 2019;11:938. [DOI:10.3390/cancers11070938] [PMID] []
26. Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 2016;7:e2312. [DOI:10.1038/cddis.2016.224] [PMID] []
27. Vautrot V, Chanteloup G, Elmallah M, Cordonnier M, Aubin F, Garrido C, et al. Exosomal miRNA: Small molecules, big impact in colorectal cancer. J Oncol. 2019;2019:8585276. [DOI:10.1155/2019/8585276] [PMID] []
28. Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci OA. 2020;6:FSO465. [DOI:10.2144/fsoa-2019-0116] [PMID] []
29. Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014;74:575-586. [DOI:10.1158/0008-5472.CAN-13-3512] [PMID]
30. Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One. 2012;7:e44398. [DOI:10.1371/journal.pone.0044398] [PMID] []
31. Xi Y, Formentini A, Ju J. Prognostic values of microRNAs in colorectal cancer. Biomarker Insights. 2006;1:113-121. [DOI:10.1177/117727190600100009]
32. Sohel MH. Extracellular/circulating microRNAs: Release mechanisms, functions and challenges. Achiev Life Sci. 2016;10(2):175-186. [DOI:10.1016/j.als.2016.11.007]
33. Bakhsh T, Alhazmi S, Alburae NA, Farsi A, Alzahrani F, Choudhry H, et al. Exosomal miRNAs as a promising source of biomarkers in colorectal cancer progression. Int J Mol Sci. 2022;23(9):4855. [DOI:10.3390/ijms23094855] [PMID] []
34. Wang Y, Nie H, He X, Liao Z, Zhou Y, Zhou J, et al. The emerging role of super enhancer-derived noncoding RNAs in human cancer. Theranostics. 2020;10(24):11049-11062. [DOI:10.7150/thno.49168] [PMID] []
35. Dempsey JL, Cui JY. Long non-coding RNAs: A novel paradigm for toxicology. Toxicol Sci. 2017;155(1):3-21. [DOI:10.1093/toxsci/kfw203] [PMID] []
36. Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, et al. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer. 2017;16:130. [DOI:10.1186/s12943-017-0699-3] [PMID] []
37. Galamb O, Barták BK, Kalmár A, Nagy ZB, Szigeti KA, Tulassay Z, et al. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J Gastroenterol. 2019;25(34):5026-5048. [DOI:10.3748/wjg.v25.i34.5026] [PMID] []
38. Cheshomi H, Matin MM. Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. J Cell Biochem. 2019;120(2):2671-2686. [DOI:10.1002/jcb.27582] [PMID]
39. Sun R, He XY, Mei C, Ou CL. Role of exosomal long non-coding RNAs in colorectal cancer. World J Gastrointest Oncol. 2021;13(8):867-878. [DOI:10.4251/wjgo.v13.i8.867] [PMID] []
40. Zhu LP, He YJ, Hou JC, Chen X, Zhou SY, Yang SJ, et al. The role of circRNAs in cancers. Biosci Rep. 2018;38(6):BSR20170750.
41. Santer L, Bär C, Thum T. Circular RNAs: A novel class of functional RNA molecules with a therapeutic perspective. Mol Ther. 2019;27(8):1350-1367. [DOI:10.1016/j.ymthe.2019.07.001] [PMID] []
42. Cheng D, Wang J, Dong Z, Li X. Cancer-related circular RNA: diverse biological functions. Cancer Cell Int. 2021;21:11. [DOI:10.1186/s12935-020-01703-z] [PMID] []
43. Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, et al. Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 2019;18:90. [DOI:10.1186/s12943-019-1002-6] [PMID] []
44. Wang P, He X. Current research on circular RNAs associated with colorectal cancer. Scand J Gastroenterol. 2017;52(11):1203-1210. [DOI:10.1080/00365521.2017.1365168] [PMID]
45. Artemaki PI, Scorilas A, Kontos CK. Circular RNAs: a new piece in the colorectal cancer puzzle. Cancers (Basel). 2020;12(9):2464. [DOI:10.3390/cancers12092464] [PMID] []
46. Wang M, Yu F, Li P, Wang K. Emerging function and clinical significance of exosomal circRNAs in cancer. Mol Ther Nucleic Acids. 2020;21:367-383. [DOI:10.1016/j.omtn.2020.06.008] [PMID] []
47. Shi X, Wang B, Feng X, Xu Y, Lu K, Sun M, et al. circRNAs and exosomes: a mysterious frontier for human cancer. Mol Ther Nucleic Acids. 2020;19:1005-1021. [DOI:10.1016/j.omtn.2019.11.023] [PMID] []
48. Zarà M, Amadio P, Campodonico J, Sandrini L, Barbieri SS. Exosomes in cardiovascular diseases. Diagnostics (Basel). 2020;10(11):1943. [DOI:10.3390/diagnostics10110943] [PMID] []
49. Geng X, Lin X, Zhang Y, Li Q, Guo Y, Fang C, et al. Exosomal circular RNA sorting mechanisms and their function in promoting or inhibiting cancer. Oncol Lett. 2020;20:296. [DOI:10.3892/ol.2020.11449]
50. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981-984. [DOI:10.1038/cr.2015.82] [PMID] []
51. Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-derived non-coding RNAs in the tumor microenvironment of colorectal cancer: possible functions, mechanisms and clinical applications. Front Oncol. 2022;12:887532. [DOI:10.3389/fonc.2022.887532] [PMID] []
52. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873-887. [DOI:10.1016/j.cell.2011.08.039] [PMID]
53. Tanaka S, Tatsuguchi A, Futagami S, Gudis K, Wada K, Seo T, et al. Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut. 2005;54:1761-1766. [DOI:10.1136/gut.2004.059824] [PMID] []
54. da Costa VR, Araldi RP, Vigerelli H, D'Ámelio F, Mendes TB, Gonzaga V, et al. Exosomes in the tumor microenvironment: from biology to clinical applications. Cells. 2021;10(10):2617. [DOI:10.3390/cells10102617] [PMID] []
55. He Q, Ye A, Ye W, Liao X, Qin G, Xu Y, et al. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 2021;12:576. [DOI:10.1038/s41419-021-03803-8] [PMID] []
56. Hu HY, Yu CH, Zhang HH, Zhang SZ, Yu WY, Yang Y, et al. Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int J Biol Macromol. 2019;133:771-780. [DOI:10.1016/j.ijbiomac.2019.03.221] [PMID]
57. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9:5395. [DOI:10.1038/s41467-018-07810-w] [PMID] []
58. Dokhanchi M, Pakravan K, Zareian S, Hussen BM, Farid M, Razmara E, et al. Colorectal cancer cell-derived extracellular vesicles transfer miR-221-3p to promote endothelial cell angiogenesis via targeting suppressor of cytokine signaling 3. Life Sci. 2021;277:119937. [DOI:10.1016/j.lfs.2021.119937] [PMID]
59. Shang A, Wang X, Gu C, Liu W, Sun J, Zeng B, et al. Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY). 2021;13:25099-25116. [DOI:10.2139/ssrn.3514654]
60. Dou R, Liu K, Yang C, Zheng J, Shi D, Lin X, et al. EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin Transl Med. 2022;12:e595. [DOI:10.1002/ctm2.595] [PMID] []
61. Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;476:1-13. [DOI:10.1016/j.canlet.2019.11.009] [PMID]
62. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329-360. [DOI:10.1146/annurev.immunol.22.012703.104803] [PMID]
63. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases - elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16-25. [DOI:10.1016/j.coi.2014.01.004] [PMID] []
64. Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48(3):399-416. [DOI:10.1016/j.immuni.2018.03.004] [PMID]
65. Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound. Br J Cancer. 2021;124(9):1491-1502. [DOI:10.1038/s41416-021-01309-w] [PMID] []
66. Shang A, Gu C, Wang W, Sun J, Zeng B, Chen C, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 2020;19(1):117. [DOI:10.1186/s12943-020-01235-0] [PMID] []
67. Liu J, Peng X, Yang S, Meng X, Zhang P, Zhao Y, et al. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal. 2022;20(1):14. [DOI:10.1186/s12964-021-00816-w] [PMID] []
68. Xian D, Niu L, Zeng J, Wang L. LncRNA KCNQ1OT1 secreted by tumor cell-derived exosomes mediates immune escape in colorectal cancer by regulating PD-L1 ubiquitination via miR-30a-5p/USP22. Front Cell Dev Biol. 2021;9:653808. [DOI:10.3389/fcell.2021.653808] [PMID] []
69. Huang Y, Luo Y, Ou W, Zhang X, Li J, Chen H, et al. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC. Cancer Cell Int. 2021;21:528. [DOI:10.1186/s12935-021-02221-2] [PMID] []
70. Doak GR, Schwertfeger KL, Wood DK. Distant relations: macrophage functions in the metastatic niche. Trends Cancer. 2018;4(6):445-459. [DOI:10.1016/j.trecan.2018.03.011] [PMID] []
71. Wang D, Wang X, Si M, Yang J, Sun S, Wu H, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020;470:36-48. [DOI:10.1016/j.canlet.2020.01.005] [PMID]
72. Zhao S, Mi Y, Guan B, Li J, Wang H, Chen X, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 2020;13:156. [DOI:10.1186/s13045-020-00991-2] [PMID] []
73. Liang ZX, Liu HS, Wang FW, Zhang Y, Chen H, Li J, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2019;10:829. [DOI:10.1038/s41419-019-2077-0] [PMID] []
74. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27-47. [DOI:10.1016/j.cmet.2015.12.006] [PMID] []
75. Tao L, Xu C, Shen W, Tan J, Li L, Fan M, et al. HIPK3 inhibition by exosomal hsa-miR-101-3p is related to metabolic reprogramming in colorectal cancer. Front Oncol. 2022;11:758336. [DOI:10.3389/fonc.2021.758336] [PMID] []
76. Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14(3):539-555. [DOI:10.1002/1878-0261.12629] [PMID] []
77. Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, et al. Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res. 2016;76(14):4051-4057. [DOI:10.1158/0008-5472.CAN-16-0651] [PMID]
78. Di W, Zhang W, Zhu B, Li X, Tang Q, Zhou Y. Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol. 2020;235(10):7341-7355. [DOI:10.1002/jcp.30245] [PMID]
79. Yang H, Zhang H, Yang Y, Wang X, Deng T, Liu R, et al. Hypoxia induced exosomal circRNA promotes metastasis of colorectal cancer via targeting GEF-H1/RhoA axis. Theranostics. 2020;10(18):8211-8226. [DOI:10.7150/thno.44419] [PMID] []
80. Yang K, Zhang J, Bao C. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis. BMC Cancer. 2021;21:933. [DOI:10.1186/s12885-021-08669-9] [PMID] []
81. Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour microenvironment stress promotes the development of drug resistance. Antioxidants (Basel). 2021;10(11):1801. [DOI:10.3390/antiox10111801] [PMID] []
82. Yun BD, Choi YJ, Son SW, Cipolla GA, Berti FCB, Malheiros D, et al. Oncogenic role of exosomal circular and long noncoding RNAs in gastrointestinal cancers. Int J Mol Sci. 2022;23(2):930. [DOI:10.3390/ijms23020930] [PMID] []
83. Shakeran Z, Varshosaz J, Keyhanfar M, Mohammad-Beigi H, Rahimi K, Sutherland DS. Co-delivery of STAT3 siRNA and methotrexate in breast cancer cells. Drug Deliv. 2022;29(1):723-733. [DOI:10.1080/21691401.2022.2030746] [PMID]
84. Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, et al. Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med. 2021;25(6):3236-3247. [DOI:10.1111/jcmm.15765] [PMID] []
85. Ning T, Li J, He Y, Zhang H, Wang X, Deng T, et al. Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer. Mol Ther. 2021;29(9):2723-2736. [DOI:10.1016/j.ymthe.2021.04.028] [PMID] []
86. Deng X, Ruan H, Zhang X, Xu X, Zhu Y, Peng H, et al. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer. 2020;146(6):1700-1716. doi:10.1002/ijc.32608. [DOI:10.1002/ijc.32608] [PMID]
87. Hon KW, Ab-Mutalib NS, Abdullah NMA, Jamal R, Abu N, et al. Extracellular vesicle-derived circular RNAs confers chemoresistance in colorectal cancer. Sci Rep. 2019;9:16497. [DOI:10.1038/s41598-019-53063-y] [PMID] []
88. Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, et al. MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci. 2020;111(5):1528-1541. [DOI:10.1111/cas.14356] [PMID] []
89. Liu H, Yin Y, Hu Y, Feng Y, Bian Z, Yao S, et al. miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH1. Pathol Res Pract. 2016;212(7):643-649. [DOI:10.1016/j.prp.2016.04.011] [PMID]
90. Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18(1):91. [DOI:10.1186/s12943-019-1019-x] [PMID] []
91. Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8(14):3932-3948. [DOI:10.7150/thno.25541] [PMID] []
92. Kobayashi M, Kawachi H, Hurtado C, Wielandt AM, Ponce A, Karelovic S, et al. A pilot trial to quantify plasma exosomes in colorectal cancer screening from the international collaborative study between Chile and Japan. Digestion. 2019;99(2):116-124.
93. Ostenfeld MS, Jensen SG, Jeppesen DK, Christensen LL, Thorsen SB, Stenvang J, et al. miRNA profiling of circulating EpCAM+ extracellular vesicles: promising biomarkers of colorectal cancer. J Extracell Vesicles. 2016;5:31488. [DOI:10.3402/jev.v5.31488] [PMID] []
94. Li J, Chen Y, Guo X, Zhou L, Jia Z, Peng Z, et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med. 2017;21(12):2963-2973. [DOI:10.1111/jcmm.12941] [PMID] []
95. Li M, Chen L, Liu S, Yu Y, Guo Q, Li P, et al. Loss of circulating exosomal miR-92b is a novel biomarker of colorectal cancer at early stage. Int J Mol Sci. 2019;20(21):5450.
96. Wang J, Yan F, Zhao Q, Zhan F, Wang R, Wang L, et al. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci Rep. 2017;7:4150. [DOI:10.1038/s41598-017-04386-1] [PMID] []
97. Zhang H, Zhu M, Shan X, Zhou X, Wang T, Zhang J, et al. A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene. 2019;698:125-133. [DOI:10.1016/j.gene.2018.11.055] [PMID]
98. Teng Y, Ren Y, Hu X, Zhang X, Li J, Wang H, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448. [DOI:10.1038/ncomms14448] [PMID] []
99. Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A, et al. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget. 2017;8:12841-12852.
100. Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J, et al. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol. 2018;233:9620-9631. [DOI:10.1002/jcp.26316] [PMID]
101. Barbagallo C, Brex D, Caponnetto A, Di Pietro C, Purrello M, Ragusa M, et al. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. Mol Ther Nucleic Acids. 2018;12:684-695. [DOI:10.1016/j.omtn.2018.05.009] [PMID] []
102. Wang L, Duan W, Yan S, Xie Y, Wang C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed Pharmacother. 2019;118:108758. [DOI:10.1016/j.biopha.2019.108758] [PMID]
103. Hu D, Zhan Y, Zhu K, Bai M, Han J, Si Y, et al. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Cell Physiol Biochem. 2019;51(6):2704-2715. [DOI:10.1159/000495961] [PMID]
104. Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, et al. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016; 7(51): 85551-85563. [DOI:10.18632/oncotarget.13465] [PMID] []
105. Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B et al. Prognostic and predictive value of long non-coding RNA GAS5 and microRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark. 2018;22:23-32. [DOI:10.3233/CBM-171011] [PMID]
106. Oehme F, Krahl S, Gyorffy B, Muessle B, Rao V, Greif H, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer. RNA Biol. 2019;16(10):1339-1345. [DOI:10.1080/15476286.2019.1637697] [PMID] []
107. Li Y, Li C, Xu R, Wang Y, Li D, Zhang B, et al. A novel circFMN2 promotes tumor proliferation in CRC by regulating the miR-1182/hTERT signaling pathways. Clin Sci (Lond). 2019;133(24):2463-2479. [DOI:10.1042/CS20190715] [PMID]
108. Liu N, Jiang F, Chen Z. A preliminary study on the pathogenesis of colorectal cancer by constructing a hsa-circRNA-0067835-miRNA-mRNA regulatory network. Onco Targets Ther. 2021;14:4645-4658. [DOI:10.2147/OTT.S319300] [PMID] []
109. Pan B, Qin J, Liu X, He B, Wang X, Pan Y, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096. [DOI:10.3389/fgene.2019.01096] [PMID] []
110. Zhao X, Wu D, Ma X, Wang J, Hou W, Zhang W, et al. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 2020;131:110237. [DOI:10.1016/j.biopha.2020.110237] [PMID]
111. Lahouty M, Fadaee M, Shanehbandi D & Kazemi T. Exosome-driven nano-immunotherapy: revolutionizing colorectal cancer treatment. Mol Biol Rep. 2025;52:83. [DOI:10.1007/s11033-024-10157-9] [PMID]
112. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698-7710. [DOI:10.1021/nn402232g] [PMID]
113. Wei H, Chen J, Wang S, Fu F, Zhu X, Wu C, et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomed. 2019;14:8603-8610. [DOI:10.2147/IJN.S218988] [PMID] []
114. Salarpour S, Forootanfar H, Pournamdari M, Ahmadi-Zeidabadi M, Esmaeeli M & Pardakhty A. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. DARU J Pharm Sci. 2019;27:533-539. [DOI:10.1007/s40199-019-00280-5] [PMID] []
115. Kim G, Kim M, Lee Y, Byun JW, Hwang DW, Lee M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J Control Release. 2020;317:273-284. [DOI:10.1016/j.jconrel.2019.11.009] [PMID]
116. Yang Z, Xie J, Zhu J, Kang C, Chiang C, Wang X, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release. 2017;261:112-123.
117. Lu M, Zhao X, Xing H, Xun Z, Zhu S, Lang L, et al. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm. 2018;550(1-2):100-110. [DOI:10.1016/j.ijpharm.2018.08.040] [PMID]
118. Aspe JR, Diaz Osterman CJ, Jutzy JMS, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles. 2014;3:23244. [DOI:10.3402/jev.v3.23244] [PMID] []
119. Kim H, Jang H, Cho H, Choi J, Hwang KY, Choi Y, et al. Recent advances in exosome-based drug delivery for cancer therapy. Cancers. 2021;13(17):4435. [DOI:10.3390/cancers13174435] [PMID] []
120. Uratani R, Toiyama Y, Kitajima T, Kawamura M, Hiro J, Kobayashi M, et al. Diagnostic potential of cell-free and exosomal microRNAs in the identification of patients with high-risk colorectal adenomas. PLoS One. 2016;11(10):e0160722. [DOI:10.1371/journal.pone.0160722] [PMID] []
121. Baassiri A, Nassar F, Mukherji D, Shamseddine A, Nasr R, et al. Exosomal non coding RNA in liquid biopsies as a promising biomarker for colorectal cancer. Int J Mol Sci. 2020;21(4):1398. [DOI:10.3390/ijms21041398] [PMID] []
122. Minciacchi VR, Zijlstra A, Rubin MA & Vizio DD. Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed? Prostate Cancer Prostat Dis. 2017;20(3):251-258. [DOI:10.1038/pcan.2017.7] [PMID] []
123. Maas SLN, de Vrij J, van der Vlist EJ, Geragousian B, van Bloois L, Mastrobattista E, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015;200:87-96. [DOI:10.1016/j.jconrel.2014.12.041] [PMID] []
124. Zheng R, Zhang K, Tan S, Li Y, Li X, Wang Y, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21:49. [DOI:10.1186/s12943-021-01471-y] [PMID] []
125. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921. [DOI:10.1371/journal.pone.0092921] [PMID] []
126. Yan S, Jiang Y, Liang C, Cheng M, Jin C, Duan Q, et al. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J Cell Biochem. 2018;119(2):1562-1570. [DOI:10.1002/jcb.26609] [PMID]
127. Chen HL, Li JJ, Jiang F, Shi WJ, Chang GY, et al. MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer. Biosci Biotechnol Biochem. 2020;84(2):338-346. [DOI:10.1080/09168451.2019.1677452] [PMID]
128. Wang J, Liu Y, Li Y, Zheng X, Gan J, Wan Z, et al. Exosomal miR-10a derived from colorectal cancer cells suppresses migration of human lung fibroblasts, and expression of IL-6, IL-8 and IL-1β. Mol Med Rep. 2020; 22(6): 5087-5095. [DOI:10.3892/mmr.2020.11723] [PMID] []
129. Zhang N, Zhang PP, Huang JJ, Wang ZY, Zhang ZH, Yuan JZ, et al. Reduced serum exosomal miR-874 expression predicts poor prognosis in colorectal cancer. Eur Rev Med Pharmacol Sci. 2020;24(1):664-672.
130. Wang L, Song X, Yu M, Niu L, Zhao Y, Tang Y, et al. Serum exosomal miR-377-3p and miR-381-3p as diagnostic biomarkers in colorectal cancer. Future Oncol. 2022;18(7):793-805. [DOI:10.2217/fon-2021-1130] [PMID]
131. Zhang Y, Wang S, Lai Q, Fang Y, Wu C, Liu Y, et al. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop. Cancer Lett. 2020;491:22-35. [DOI:10.1016/j.canlet.2020.07.023] [PMID]
132. Li N, Li J, Mi Q, Xie Y, Li P, Wang L, et al. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/β-catenin signalling pathway and is a potential diagnostic biomarker. J Cell Mol Med. 2020;24(19):11314-27. [DOI:10.1111/jcmm.15713] [PMID] []
133. Handa T, Kuroha M, Nagai H, Shimoyama Y, Naito T, Moroi R, et al. Liquid biopsy for colorectal adenoma: is the exosomal miRNA derived from organoid a potential diagnostic biomarker? Clin Transl Gastroenterol. 2021;12(5):e00356. [DOI:10.14309/ctg.0000000000000356] [PMID] []
134. Jiang Y, Ji X, Liu K, Zhang G, Wang C, Xu X, et al. Exosomal miR-200c-3p negatively regulates the migration and invasion of lipopolysaccharide (LPS)-stimulated colorectal cancer (CRC). BMC Mol Cell Biol. 2020;21:48. [DOI:10.1186/s12860-020-00291-0] [PMID] []
135. Dai W, Zhou J, Wang H, Zhang M, Yang X, Song W, et al. miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathol Res Pract. 2019;215(11):152731. [DOI:10.1016/j.prp.2019.152731] [PMID]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA

Ethics code: Not Applicable



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mansouri P, Shanehbandi D. A Review of the Impact of Exosomal Non-Coding RNAs on the Development of Malignant Colorectal Tumors. J Ardabil Univ Med Sci 2025; 25 (2) : 1
URL: http://jarums.arums.ac.ir/article-1-2526-fa.html

منصوری پرهام، شانه‌بندی داریوش. مروری بر اثر RNAهای غیرکدکننده اگزوزوم‌ها بر توسعه تومورهای بدخیم روده. مجله دانشگاه علوم پزشکی اردبیل. 1404; 25 (2) :118-146

URL: http://jarums.arums.ac.ir/article-1-2526-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 25، شماره 2 - ( تابستان 1404 ) برگشت به فهرست نسخه ها
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.07 seconds with 41 queries by YEKTAWEB 4623