[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
indexing and abstracting::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 25, Issue 2 (Summer 2025) ::
J Ardabil Univ Med Sci 2025, 25(2): 234-246 Back to browse issues page
Morphological Evaluation of Cerebellar Purkinje Neurons in Adult Male Rats with Spinal Cord Injury Following Curcumin Treatment
Kaveh Samadi , Ramin Salimnejad , Mohammad Jannat Dost , Behnam Ahadi , Zeinab Namjoo *
Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran , z.namjoo@arums.ac.ir
Abstract:   (256 Views)
Background: Curcumin is the main and active compound of turmeric and a yellow phenolic pigment that has antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of curcumin on the morphology of cerebellar Purkinje neurons in rats with spinal cord injury.
Methods: In this experimental study, 9 rats were randomly divided into 3 groups: 1) spinal cord injury (SCI); 2) laminectomy; and 3) spinal cord injury+curcumin (SCI+curcumin). Spinal cord injury was induced by compression at the T10 segment of the spinal cord by placing a 50-gram weight for 5 minutes. In the treatment group, curcumin was administered at a dose of 100 mg/kg daily for 8 weeks by gavage. At the end of the 8th week, the BBB motor test was performed on the rats in all three groups, and after euthanasia, their cerebellum was removed and stained with hematoxylin and eosin. Finally, the tissue organization of the molecular, Purkinje, and granular layers and the tissue damage index were analyzed histologically.
Results: The results of our study showed that the morphology of cerebellar Purkinje cells changes after spinal cord injury, but treatment with curcumin can reduce the destruction of these cells and maintain their typical morphological characteristics.
Conclusion: Based on the present study, curcumin can reduce the destruction of cerebellar Purkinje neurons in rats with spinal cord injury and also lead to motor improvement in these animals.
Article number: 7
Keywords: Cerebellum, Purkinje Neuron, Spinal Cord Injury, Curcumin
Full-Text [PDF 3122 kb]   (141 Downloads)    
Type of Study: article | Subject: Anatomy
Received: 2025/07/30 | Accepted: 2025/10/7 | Published: 2025/11/22
References
1. Academy of Spinal Cord Injury Professionals 2022 ASCIP Hybrid Educational Conference & Expo September 7-10 Kansas City, MO, POSTER ABSTRACTS P1-P25: J Spinal Cord Med. 2022 29;45(5):789-803. [DOI:10.1080/10790268.2022.2106742] []
2. Hamidabadi HG, Simorgh S, Kamrava SK, Namjoo Z, Bagher Z, Bojnordi MN, et al. Promoting motor functions in a spinal cord injury model of rats using transplantation of differentiated human olfactory stem cells: A step towards future therapy. Behav Brain Res. 2021;405:113205. [DOI:10.1016/j.bbr.2021.113205] [PMID]
3. Sun L, Peng C, Joosten E, Cheung CW, Tan F, Jiang W, et al. Spinal cord stimulation and treatment of peripheral or central neuropathic pain: mechanisms and clinical application. Neural Plast. 2021;2021:5607898. [DOI:10.1155/2021/5607898] [PMID] []
4. Basnak'ian AG, Baskov AV, Sokolov NN, Borshchenko IA. Apoptosis during spinal cord trauma: prospects for pharmacological correction]. Vopr Med Khim. 2000;46(5):431-43.
5. Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, et al. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci. 2022;16:1005399. [DOI:10.3389/fncel.2022.1005399] [PMID] []
6. Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19(4):313-24. [DOI:10.1177/1545968305281515] [PMID]
7. Hassanzadeh S, Jameie SB, Mehdizadeh M, Soleimani M, Namjoo Z, Soleimani M. FNDC5 expression in Purkinje neurons of adult male rats with acute spinal cord injury following treatment with methylprednisolone. Neuropeptides. 2018;70:16-25. [DOI:10.1016/j.npep.2018.05.002] [PMID]
8. Seth A, Chung YG, Kim D, Ramachandran A, Cristofaro V, Gomez P, et al. The impact of discrete modes of spinal cord injury on bladder muscle contractility. BMC Urol. 2013;13:24. [DOI:10.1186/1471-2490-13-24] [PMID] []
9. Bruehlmeier M, Dietz V, Leenders KL, Roelcke U, Missimer J, Curt A. How does the human brain deal with a spinal cord injury? Eur J Neurosci. 1998;10(12):3918-22. [DOI:10.1046/j.1460-9568.1998.00454.x] [PMID]
10. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J . 2004;4(4):451-64. [DOI:10.1016/j.spinee.2003.07.007] [PMID]
11. Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J. 2008;17(9):1256-69. [DOI:10.1007/s00586-008-0729-3] [PMID] []
12. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70(5):257-65. [DOI:10.1111/j.1753-4887.2012.00476.x] [PMID]
13. Alizadeh F, Javadi M, Karami AA, Gholaminejad F, Kavianpour M, Haghighian HK. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phytother Res. 2018;32(3):514-21. [DOI:10.1002/ptr.5998] [PMID]
14. Yang SH, He JB, Yu LH, Li L, Long M, Liu MD, et al. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. Environ Sci Pollut Res Int. 2019;26(33):34575-83. [DOI:10.1007/s11356-019-06587-9] [PMID]
15. Aktas C, Kanter M, Erboga M, Ozturk S. Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health. 2012;28(2):122-30. [DOI:10.1177/0748233711407242] [PMID]
16. Namjoo Z, Moradi F, Aryanpour R, Piryaei A, Joghataei MT, Abbasi Y, et al. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model. Metab Brain Dis. 2018;33(4):1229-42. [DOI:10.1007/s11011-018-0220-8] [PMID]
17. Zhang Q, Yang H, An J, Zhang R, Chen B, Hao D-J. Therapeutic effects of traditional chinese medicine on spinal cord injury: a promising supplementary treatment in future. Evid Based Complement Alternat Med. 2016;2016:8958721. [DOI:10.1155/2016/8958721] [PMID] []
18. Schmahmann JD. The cerebellum and cognition. Neurosci. Lett. 2019;688:62-75. [DOI:10.1016/j.neulet.2018.07.005] [PMID]
19. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. Physiol. J. 2014;592(16):3345-69. [DOI:10.1113/jphysiol.2013.270280] [PMID] []
20. Young W, Bracken MB. The second national acute spinal cord injury study. J Neurotrauma. 1992;9: 397-405. [DOI:10.1089/neu.1992.9.151] [PMID]
21. Harif-Alhoseini M, Khormali M, Rezaei M, Safdarian M, Hajighadery A, Khalatbari MM, et al. Animal models of spinal cord injury: a systematic review. Spinal cord. 2017;55(8):714-21. [DOI:10.1038/sc.2016.187] [PMID]
22. Wrigley PJ, Gustin SM, Macey PM, Nash PG, Gandevia SC, Macefield VG, et al. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb. Cortex. 2009;19(1):224-32. [DOI:10.1093/cercor/bhn072] [PMID]
23. Freund P, Rothwell J, Craggs M, Thompson AJ, Bestmann S. Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci. 2011;34(11):1839-46. [DOI:10.1111/j.1460-9568.2011.07895.x] [PMID]
24. Piao CS, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, et al. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis. 2013;54:252-63. [DOI:10.1016/j.nbd.2012.12.017] [PMID] []
25. Gokce EC, Kahveci R, Gokce A, Sargon MF, Kisa U, Aksoy N, et al. Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis. 2016;25(5):1196-207. [DOI:10.1016/j.jstrokecerebrovasdis.2016.01.008] [PMID]
26. Chang C-M, Lee M-H, Wang T-C, Weng H-H, Chung C-Y, Yang J-T. Brain protection by methylprednisolone in rats with spinal cord injury. Neuroreport. 2009;20(10):968-72. [DOI:10.1097/WNR.0b013e32832d0a28] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.ARUMS.AEC.1400.003



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Samadi K, Salimnejad R, Jannat Dost M, Ahadi B, Namjoo Z. Morphological Evaluation of Cerebellar Purkinje Neurons in Adult Male Rats with Spinal Cord Injury Following Curcumin Treatment. J Ardabil Univ Med Sci 2025; 25 (2) : 7
URL: http://jarums.arums.ac.ir/article-1-2524-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 25, Issue 2 (Summer 2025) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 41 queries by YEKTAWEB 4623