Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran. , n_ranji@iaurasht.ac.ir
Abstract: (74 Views)
Background:Gastric cancer is a type of malignancy that affects the digestive system. Symptoms of gastric cancer are often hard to detect in the early stages, and become more noticeable only after cancer cells have grown inside the stomach wall and spread to other parts of the body. The genetic code of the cancer cells is located within the genome. Synonymous and non-synonymous mutations are two subgroups of SNP codes. The purpose of this study was to investigate the correlation between genetic variants and susceptibility to gastric cancer in Ardabil province. Methods: The distribution of variants in the genomic DNA of 150 volunteers from the general population of Ardabil was determined using whole exome sequencing. Databases such as Iranome, Alfa, GnomAD, and 1000G were used to compare allele frequencies. After calculating the frequency of variants using standard methods, Pearson correlation was utilized to statistically analyze their correlation with age-standardized incidence rates (ASRs) for gastric cancer in related populations. A p-value below 0.05 was deemed statistically significant for all analyses. Statistical analysis was conducted using IBM SPSS Statistics version 25. Results: Significant differences in 19 variants , including rs10061133, rs1050631, rs12220909, rs12983273, rs1695, rs2274223, rs2292832, rs2294008, rs2505901, rs2976391, rs33927012, rs3744037, rs3745469, rs4789936, rs4986790, rs4986791, rs6194, rs63750447, and rs6505162 were found between the general population of Ardabil and other populations. A statistically significant difference was observed and reported at the 0.05 and 0.01 levels in relation to the correlation between the desired variants. Conclusion: Results suggest a correlation between gene variants in carcinogenesis, highlighting the need for functional studies on gene cooperation in gastric cancer development.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. [DOI:10.3322/caac.21660] [PMID]
2. Babaei M, Jaafarzadeh H, Sadjadi AR, Samadi F, Yazdanbod A, Fallah M, et al. Cancer incidence and mortality in Ardabil: Report of an ongoing population-based cancer registry in Iran, 2004-2006. Iran J Public Health. 2009;38(4):35-45.
3. Derakhshan MH, Yazdanbod A, Sadjadi AR, Shokoohi B, McColl KE, Malekzadeh R. High incidence of adenocarcinoma arising from the right side of the gastric cardia in NW Iran. Gut. 2004;53(9):1262-6. [DOI:10.1136/gut.2003.035857] [PMID] []
4. Yang W, Zhang T, Song X, Dong G, Xu L, Jiang F. SNP-target genes interaction perturbing the cancer risk in the post-GWAS. Cancers. 2022;14(22):5636. [DOI:10.3390/cancers14225636] [PMID] []
5. Yan C, Zhu M, Ding Y, Yang M, Wang M, Li G, et al. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations. Gut. 2020;69(4):641-51. [DOI:10.1136/gutjnl-2019-318760] [PMID]
6. Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12(10):683-91. [DOI:10.1038/nrg3051] [PMID]
7. Aghghaleh HA, Ranji N, Habibollahi H. Genomic susceptibility to gastric cancer in Northwest Iran: population-based and case-control studies. Egypt J Med Hum Genet. 2024;25(1):41. [DOI:10.1186/s43042-024-00474-w]
8. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. [DOI:10.1038/gim.2015.30] [PMID] []
9. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2. 0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249-55. [DOI:10.1038/gim.2017.17] [PMID]
10. El-Serag HB, Mason AC, Petersen N, Key CR. Epidemiological differences between adenocarcinoma of the esophagus and adenocarcinoma of the gastric cardia in the USA. Gut. 2002;50(3):368-72. [DOI:10.1136/gut.50.3.368] [PMID] []
11. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 2014;23(5):700-13. [DOI:10.1158/1055-9965.EPI-13-1057] [PMID] []
12. Babaei M, Pourfarzi F, Yazdanbod A, Chiniforush MM, Derakhshan MH, Mousavi SM, et al. Gastric cancer in Ardabil, Iran--a review and update on cancer registry data. Asian Pac J Cancer Prev. 2010;11(3):595-9.
13. Hosseini-Asl SS, Pourfarzi F, Barzegar A, Mazani M, Farahmand N, Niasti E, et al. Decrease in gastric cancer susceptibility by MTHFR C677T polymorphism in Ardabil Province, Iran. Turk J Gastroenterol. 2013;24(2):117-21. [DOI:10.4318/tjg.2013.0572] [PMID]
14. Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta Biomembr. 2003;1611(1-2):16-30. [DOI:10.1016/S0005-2736(03)00048-8]
15. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270(2):488-98. [DOI:10.1016/j.ydbio.2004.02.019] [PMID]
16. Zhang X, Yan Z, Zhang J, Gong L, Li W, Cui J, et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol. 2011;22(10):2257-66. [DOI:10.1093/annonc/mdq758] [PMID]
17. Yan Z, Xiong Y, Xu W, Li M, Cheng Y, Chen F, et al. Identification of recurrence-related genes by integrating microRNA and gene expression profiling of gastric cancer. Int J Oncol. 2012;41(6):2166-74. [DOI:10.3892/ijo.2012.1637] [PMID]
18. Zhang X, Li X, Tan Z, Liu X, Yang C, Ding X, et al. MicroRNA 373 is upregulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis. Oncol Lett. 2013;6(5):1427-34. [DOI:10.3892/ol.2013.1534] [PMID] []
19. Shi Y, Shi H, Zhang B, Yan Y, Han X, Jiang W, et al. miR-373 suppresses gastric cancer metastasis by downregulating vimentin. Mol Med Rep. 2018;17(3):4027-34. [DOI:10.3892/mmr.2017.8291]
20. Bastami M, Choupani J, Saadatian Z, Zununi Vahed S, Ouladsahebmadarek E, et al. Evidences from a systematic review and meta-analysis unveil the role of MiRNA polymorphisms in the predisposition to female neoplasms. Int J Mol Sci. 2019;20(20):5088. [DOI:10.3390/ijms20205088] [PMID] []
21. Chen QH, Wang QB, Zhang B. Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: a HuGE meta-analysis. Tumour Biol. 2014;35(1):529-43. [DOI:10.1007/s13277-013-1074-7] [PMID]
22. Zhu J, Yang L, You W, Cui X, Chen Y, Hu J, et al. Genetic variation in miR-100 rs1834306 is associated with decreased risk for esophageal squamous cell carcinoma in Kazakh patients in northwest China. Int J Clin Exp Pathol. 2015;8(6):7332.
23. Chen ZH, Xian JF, Luo LP. Association between GSTM1, GSTT1, and GSTP1 polymorphisms and gastric cancer risk, and their interactions with environmental factors. Genet Mol Res. 2017;16(1):gmr16018877. [DOI:10.4238/gmr16018877]
24. Ghatak S, Yadav RP, Lalrohlui F, Chakraborty P, Ghosh S, Ghosh S, et al. Xenobiotic Pathway Gene Polymorphisms Associated with Gastric Cancer in High Risk Mizo‐Mongoloid Population, Northeast India. Helicobacter. 2016;21(6):523-35. [DOI:10.1111/hel.12308] [PMID]
25. Kim J, Kim H, Lee J, Choi IJ, Kim YI, Kim J. Antioxidant-rich diet, GSTP1 rs1871042 polymorphism, and gastric cancer risk in a hospital-based case-control study. Front Oncol. 2021;10:3240. [DOI:10.3389/fonc.2020.596355] [PMID] []
26. Xu Z, Zhu H, Luk JM, Wu D, Gu D, Gong W, et al. Clinical significance of SOD2 and GSTP1 gene polymorphisms in Chinese patients with gastric cancer. Cancer. 2012;118(22):5489-96. [DOI:10.1002/cncr.27599] [PMID]
27. Mocellin S, Verdi D, Pooley KA, Nitti D. Genetic variation and gastric cancer risk: a field synopsis and meta-analysis. Gut. 2015;64(8):1209-19. [DOI:10.1136/gutjnl-2015-309168] [PMID]
28. Liang P, Zhang W, Wang W, Dai P, Wang Q, Yan W, et al. PLCE1 polymorphisms and risk of esophageal and gastric cancer in a northwestern chinese population. Biomed Res Int. 2019;2019. [DOI:10.1155/2019/9765191] [PMID] []
29. Cai M, Dai S, Chen W, Xia C, Lu L, Dai S, et al. Environmental factors, seven GWAS-identified susceptibility loci, and risk of gastric cancer and its precursors in a Chinese population. Cancer Med. 2017;6(3):708-20. [DOI:10.1002/cam4.1038] [PMID] []
30. Xie Z, Wang B, Chai Y, Chen J. Estimation of associations between 10 common gene polymorphisms and gastric cancer: evidence from a meta-analysis. J Clin Pathol. 2020;73(6):318-21. [DOI:10.1136/jclinpath-2019-206189] [PMID]
31. Yuan J, Li Y, Tian T, Li N, Zhu Y, Zou J, et al. Risk prediction for early-onset gastric carcinoma: a case-control study of polygenic gastric cancer in Han Chinese with hereditary background. Oncotarget. 2016;7(23):33608. [DOI:10.18632/oncotarget.9025] [PMID] []
32. Li M, Huang L, Qiu H, Fu Q, Li W, Yu Q, et al. Helicobacter pylori infection synergizes with three inflammation-related genetic variants in the GWASs to increase risk of gastric cancer in a Chinese population. PloS One. 2013;8(9):e74976. [DOI:10.1371/journal.pone.0074976] [PMID] []
33. Shekarriz R, Faghani S, Tafazoli A, Hashemi-Soteh MB. The correlation between phospholipase C epsilon (PLCE1) gene polymorphisms and risk of gastric adenocarcinoma in Iranian population. Int J Hematol Oncol Stem Cell Res. 2019;13(3):108. [DOI:10.18502/ijhoscr.v13i3.1268]
34. Park B, Yang S, Lee J, Woo HD, Choi IJ, Kim YW, et al. Genome-wide association of genetic variation in the PSCA gene with gastric cancer susceptibility in a Korean population. Cancer Res Treat. 2019;51(2):748. [DOI:10.4143/crt.2018.162] [PMID] []
35. He Y, Yu D, Zhu L, Zhong S, Zhao J, Tang J. miR-149 in human cancer: a systemic review. J Cancer. 2018;9(2):375. [DOI:10.7150/jca.21044] [PMID] []
36. Zhang L, Liu Q, Wang F. Association between miR-149 gene rs2292832 polymorphism and risk of gastric cancer. Arch Med Res. 2018;49(4):270-7. [DOI:10.1016/j.arcmed.2018.09.012] [PMID]
37. Xu Q, Liu JW, Yuan Y. Comprehensive assessment of the association between miRNA polymorphisms and gastric cancer risk. Mut Res. 2015;763:148-60. [DOI:10.1016/j.mrrev.2014.09.004] [PMID]
38. Ahn DH, Rah H, Choi YK, Jeon YJ, Min KT, Kwack K, et al. Association of the miR146aC> G, miR149T> C, miR196a2T> C, and miR499A> G polymorphisms with gastric cancer risk and survival in the Korean population. Mol Carcinog. 2013;52(S1):39-51. [DOI:10.1002/mc.21962] [PMID]
39. Jiang J, Jia ZF, Cao DH, Wu YH, Sun ZW, Cao XY. Association of the miR-146a rs2910164 polymorphism with gastric cancer susceptibility and prognosis. Future Oncol. 2016;12(19):2215-26. [DOI:10.2217/fon-2016-0224] [PMID]
40. Pu JY, Dong W, Zhang L, Liang WB, Yang Y, Lv ML. No association between single nucleotide polymorphisms in pre-mirnas and the risk of gastric cancer in Chinese population. Iran J Basic Med Sci. 2014;17(2):128.
41. Dikeakos P, Theodoropoulos G, Rizos S, Tzanakis N, Zografos G, Gazouli M. Association of the miR-146aC> G, miR-149T> C, and miR-196a2T> C polymorphisms with gastric cancer risk and survival in the Greek population. Mol Biol Rep. 2014;41(2):1075-80. [DOI:10.1007/s11033-013-2953-0] [PMID]
42. Hwang J, Min BH, Jang J, Kang SY, Bae H, Jang SS, et al. MicroRNA expression profiles in gastric carcinogenesis. Sci Rep. 2018;8(1):1-8. [DOI:10.1038/s41598-018-32782-8] [PMID] []
43. Torruella‐Loran I, Ramirez Vina MK, Zapata‐Contreras D, Muñoz X, Garcia Ramallo E, Bonet C, et al. rs12416605: C> T in MIR938 associates with gastric cancer through affecting the regulation of the CXCL12 chemokine gene. Mol Genet Genomic Med. 2019;7(8):e832. [DOI:10.1002/mgg3.832] [PMID] []
44. Wu Y, Jia Z, Cao D, Wang C, Wu X, You L, et al. Predictive value of miR-219-1, miR-938, miR-34b/c, and miR-218 polymorphisms for gastric cancer susceptibility and prognosis. Dis Markers. 2017;2017. [DOI:10.1155/2017/4731891] [PMID] []
45. Karageorgos I, Mizzi C, Giannopoulou E, Pavlidis C, Peters BA, Zagoriti Z, et al. Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach. Hum Genomics. 2015;9(1):1-10. [DOI:10.1186/s40246-015-0034-2] [PMID] []
46. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41-51. [DOI:10.1002/humu.21136] [PMID]
Akhavan Aghghaleh H, Ranji N, Habibollahi H. SNP-SNP Interactions and Gastric Cancer Susceptibility in Ardabil Province. J Ardabil Univ Med Sci 2024; 24 (3) :364-387 URL: http://jarums.arums.ac.ir/article-1-2429-en.html