[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 23, Issue 4 (Winter 2024) ::
J Ardabil Univ Med Sci 2024, 23(4): 418-435 Back to browse issues page
Computational Study on the Binding of Tracheal Scaffold Extracellular Matrix Fibronectin to the Integrin of Adipose Tissue Stem Cells
Aida Nahumi , Maryam Peymani , Asadollah Asadi * , Arash Abdolmaleki , Yasin Panahi , Mohammad Ali Shahmohammadi
Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran , asady@uma.ac.ir
Abstract:   (454 Views)
Background: Identifying protein interactions is one of the main challenges in the fields of biostructure and molecular biology. Despite extensive progress, the exact patterns of protein-protein interactions are still unknown. The main goal of this study is to computationally evaluate the interactions of fibronectin-1 in the extracellular matrix of decellularized trachea and integrins in adipose tissue stem cells in order to provide the most accurate possible visualization of these interactions and their role in biological processes.
Methods: After decellularization of the sheep trachea through the detergent-enzyme method, histological evaluations and ultrastructure photography of the samples were done by scanning electron microscopy. Also, the simulations of fibronectin1 binding of extracellular matrix protein with integrin αvβ1 and α5β3 of stem cells derived from adipose tissue were investigated, and interaction energy analysis was applied to predict the structure of protein-protein complexes using the algorithms available in HDOCK and ClusPro servers.
Results: The findings indicated the preservation of extracellular matrix components and scaffold ultrastructure. Also, in order to find the most favorable connection states in terms of energy, some of them were reported as stable interactions among the top types of connections. This insight provides a valuable understanding of cell-matrix adhesion, migration, and signaling, with potential implications for therapeutic development.
Conclusion: The prepared scaffolds are ideal for engineering applications for which computational analysis and experimental data have been used for visualization of stable connection states with energy efficiency between fibronectin and integrin. Also, more studies on cell adhesion modeling in connection with tissue engineering science can provide a suitable field for the development of regenerative medicine in further studies.
Article number: 8
Keywords: Extracellular Matrix Fibronectin, Integrin, Tissue Engineering, Trachea
Full-Text [PDF 895 kb]   (293 Downloads)    
Type of Study: article | Subject: Genetics and molecular medicine
Received: 2023/12/10 | Accepted: 2024/03/14 | Published: 2024/03/28
References
1. Khalid T, Soriano L, Lemoine M, Cryan S-A, O'Brien FJ, O'Leary C. Development of tissue-engineered tracheal scaffold with refined mechanical properties and vascularisation for tracheal regeneration. Front Bioeng Biotechnol. 2023;11:1187500. [DOI:10.3389/fbioe.2023.1187500] [PMID] []
2. Xu Y, Duan L, Li Y, She Y, Zhu J, Zhou G, et al. Nanofibrillar decellularized wharton's jelly matrix for segmental tracheal repair. Adv Funct Mater. 2020; 30(14):1910067. [DOI:10.1002/adfm.201910067]
3. Xia D, Jin D, Wang Q, Gao M, Zhang J, Zhang H, et al. Tissue‐engineered trachea from a 3D‐printed scaffold enhances whole‐segment tracheal repair in a goat model. J Tissue Eng Regener Med. 2019; 13(4):694-703. [DOI:10.1002/term.2828] [PMID]
4. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A. 2012; 18(21-22):2195-2209. [DOI:10.1089/ten.tea.2011.0705] [PMID]
5. Lei C, Mei S, Zhou C, Xia C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques. J Appl Biomater Funct Mater. 2021; 19:22808000211064948. [DOI:10.1177/22808000211064948] [PMID]
6. Busch SM, Lorenzana Z, Ryan AL. Implications for extracellular matrix interactions with human lung basal stem cells in lung development, disease, and airway modeling. Front Pharmacol. 2021; 12:645858. [DOI:10.3389/fphar.2021.645858] [PMID] []
7. Multhaupt HA, Leitinger B, Gullberg D, Couchman JR. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016; 97:28-40. [DOI:10.1016/j.addr.2015.10.013] [PMID]
8. Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020; 21(6):1968-1994. [DOI:10.1021/acs.biomac.0c00045] [PMID]
9. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014; 15(12):786-801. [DOI:10.1038/nrm3904] [PMID] []
10. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol. 2016; 49:10-24. [DOI:10.1016/j.matbio.2015.06.003] [PMID] []
11. Dzamba BJ, DeSimone DW. Extracellular matrix (ECM) and the sculpting of embryonic tissues. Curr Top Dev Biol. 2018; 130:245-274. [DOI:10.1016/bs.ctdb.2018.03.006] [PMID]
12. Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011; 209(2):139-151. [DOI:10.1530/JOE-10-0377] [PMID]
13. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002; 115(20):3861-3863. [DOI:10.1242/jcs.00059] [PMID]
14. Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, et al. A three-dimensional in vitro dynamic micro-tissue model of cardiac scar formation. Integr Biol. 2018; 10(3): 174-183. [DOI:10.1039/C7IB00199A] [PMID]
15. Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015; 42:11-55. [DOI:10.1016/j.matbio.2015.02.003] [PMID] []
16. Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009; 23(4):397-418. [DOI:10.1101/gad.1758709] [PMID]
17. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012; 24(5):645-651. [DOI:10.1016/j.ceb.2012.07.001] [PMID]
18. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta-Gen Subj. 2014; 1840(8):2506-2519. [DOI:10.1016/j.bbagen.2014.01.010] [PMID] []
19. Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends Cancer. 2018; 4(8):537-552. [DOI:10.1016/j.trecan.2018.05.009] [PMID]
20. Weber GF, Bjerke MA, DeSimone DW. Integrins and cadherins join forces to form adhesive networks. J Cell Sci. 2011; 124(8):1183-1193. [DOI:10.1242/jcs.064618] [PMID] []
21. Popov C, Radic T, Haasters F, Prall W, Aszodi A, Gullberg D, et al . Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011; 2(7):e186-e186. [DOI:10.1038/cddis.2011.71] [PMID] []
22. Novoseletskaya ES, Evdokimov PV, Efimenko AY. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun. Signaling. 2023; 21(1):244. [DOI:10.1186/s12964-023-01252-8] [PMID] []
23. Du J, Zu Y, Li J, Du S, Xu Y, Zhang L, et al . Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep. 2016; 6(1):20395. [DOI:10.1038/srep20395] [PMID] []
24. Olivares-Navarrete R, Lee EM, Smith K, Hyzy SL, Doroudi M, Williams JK, et al . Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PloS one. 2017; 12(1):e0170312. [DOI:10.1371/journal.pone.0170312] [PMID] []
25. Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J. Crystal structure of α5β1 integrin ectodomain: Atomic details of the fibronectin receptor. J Cell Biol. 2012; 197(1):131-140. [DOI:10.1083/jcb.201111077] [PMID] []
26. Xiong J-P, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, et al . Crystal structure of the extracellular segment of integrin αVβ3. Science. 2001; 294(5541):339-345. [DOI:10.1126/science.1064535] [PMID] []
27. Dickinson CD, Veerapandian B, Dai X-P, Hamlin RC, Xuong N-h, Ruoslahti E, et al . Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol. 1994; 236(4):1079-1092. [DOI:10.1016/0022-2836(94)90013-2] [PMID]
28. Horton MA. The αvβ3 integrin "vitronectin receptor". Int J Biochem Cell Biol. 1997; 29(5):721-725. [DOI:10.1016/S1357-2725(96)00155-0] [PMID]
29. Bachman H, Nicosia J, Dysart M, Barker TH. Utilizing fibronectin integrin-binding specificity to control cellular responses. Adv Wound Care. 2015; 4(8):501-511. [DOI:10.1089/wound.2014.0621] [PMID] []
30. Yan Y, Wen Z, Wang X, Huang SY. Addressing recent docking challenges: A hybrid strategy to integrate template‐based and free protein‐protein docking. Proteins. 2017; 85(3):497-512. [DOI:10.1002/prot.25234] [PMID]
31. Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, et al . New additions to the ClusPro server motivated by CAPRI. Proteins. 2017; 85(3):435-444. [DOI:10.1002/prot.25219] [PMID] []
32. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al . The ClusPro web server for protein-protein docking. Nat Protoc. 2017; 12(2):255-278. [DOI:10.1038/nprot.2016.169] [PMID] []
33. Yan Y, Tao H, He J, Huang S-Y. The HDOCK server for integrated protein-protein docking. Nat Protocol. 2020; 15(5):1829-1852. [DOI:10.1038/s41596-020-0312-x] [PMID]
34. Yan Y, Zhang D, Zhou P, Li B, Huang S-Y. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017; 45(W1):W365-W373. [DOI:10.1093/nar/gkx407] [PMID] []
35. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and its limits in rigid body protein-protein docking. Structure. 2020; 28(9):1071-1081. e1073. [DOI:10.1016/j.str.2020.06.006] [PMID] []
36. Huang S-Y, Zou X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res. 2014; 42(7):e55-e55. [DOI:10.1093/nar/gku077] [PMID] []
37. Huang SY, Zou X. An iterative knowledge‐based scoring function for protein-protein recognition. Proteins. 2008; 72(2):557-579. [DOI:10.1002/prot.21949] [PMID]
38. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195-4200. [DOI:10.1242/jcs.023820] [PMID] []
39. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010; 26:397-419. [DOI:10.1146/annurev-cellbio-100109-104020] [PMID] []
40. Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010; 339(1):237-246. [DOI:10.1007/s00441-009-0821-y] [PMID]
41. Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014; 5:2041731414557112. [DOI:10.1177/2041731414557112] [PMID] []
42. Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009; 61(2):198-223. [DOI:10.1124/pr.109.001289] [PMID] []
43. Benito-Jardón M, Klapproth S, Gimeno-LLuch I, Petzold T, Bharadwaj M, Müller DJ, et al. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. Elife. 2017; 6:e22264. [DOI:10.7554/eLife.22264] [PMID] []
44. Wang H, Luo X, Leighton J. Extracellular matrix and integrins in embryonic stem cell differentiation. Biochem Insights. 2015; 8(Suppl 2):15-21. [DOI:10.4137/BCI.S30377] [PMID] []
45. Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P, et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials. 2010; 31(34):8931-8938. [DOI:10.1016/j.biomaterials.2010.08.005] [PMID]
46. Shin YS, Choi JW, Park J-K, Kim YS, Yang SS, Min B-H, et al. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng. 2015; 43:1003-1013. [DOI:10.1007/s10439-014-1126-1] [PMID]
47. Giraldo-Gomez DM, García-López SJ, Tamay-de-Dios L, Sánchez-Sánchez R, Villalba-Caloca J, Sotres-Vega A, et al. Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. Mater Sci Eng C. 2019; 105:110142. [DOI:10.1016/j.msec.2019.110142] [PMID]
48. Danen EH, Sonneveld P, Brakebusch C, Fässler R, Sonnenberg A. The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol. 2002; 159(6):1071-1086. [DOI:10.1083/jcb.200205014] [PMID] []
49. Mohri H, Katoh K, Iwamatsu A, Okubo T. The novel recognition site in the C-terminal heparin-binding domain of fibronectin by integrin α4β1 receptor on HL-60 cells. Exp Cell Res. 1996; 222(2):326-332. [DOI:10.1006/excr.1996.0042] [PMID]
50. Mould AP, Humphries MJ. Identification of a novel recognition sequence for the integrin alpha 4 beta 1 in the COOH‐terminal heparin‐binding domain of fibronectin. EMBO J. 1991; 10(13):4089-4095. [DOI:10.1002/j.1460-2075.1991.tb04985.x] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.IAU.SHK.REC.1401.078



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nahumi A, Peymani M, Asadi A, Abdolmaleki A, Panahi Y, Shahmohammadi M A. Computational Study on the Binding of Tracheal Scaffold Extracellular Matrix Fibronectin to the Integrin of Adipose Tissue Stem Cells. J Ardabil Univ Med Sci 2024; 23 (4) : 8
URL: http://jarums.arums.ac.ir/article-1-2351-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 4 (Winter 2024) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.17 seconds with 41 queries by YEKTAWEB 4623