[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 23, Issue 3 (Autumn 2023) ::
J Ardabil Univ Med Sci 2023, 23(3): 292-308 Back to browse issues page
A Novel Design of a Non-Enzymatic Biosensor for the Detection of Hydrogen Peroxide Based on MWCNT/Co3O4/Hemoglobin Structures
Masoomeh Saboorifar , Ali Shamsazar , Asadollah Asadi * , Mostafa Shourian
Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran , asady@uma.ac.ir
Abstract:   (626 Views)
Background: Determining the concentration of hydrogen peroxide in liquids and biological samples is very important because of its effects on human health. This study aimed to design a new electrochemical biosensor based on hemoglobin to detect hydrogen peroxide in serum samples.
Methods: In this study, a basic science, a biosensor based on modifying the glassy carbon electrode surface with a nanocomposite consisting of cobalt oxide nanoparticles and multi-walled carbon nanotube functionalized with a carboxyl group (MWCNT/Co3O4) and hemoglobin stabilized on this nanocomposite was made as a biological recognition element.
Results: In optimal conditions, the biosensor was used to measure different concentrations of hydrogen peroxide. The designed biosensor showed a wide linear response range from 10 μM to 500 μM, a detection limit of 0.512 μM, and high reproducibility and stability.
Conclusion: In this innovative research work, MWCNTs/Co3O4 nanocomposite was used to make a diagnostic biosensor. The presented biosensor showed an acceptable performance in the measurement of hydrogen peroxide in serum samples and laboratory solutions.

 
Article number: 7
Keywords: Biosensor, Nanocomposite, Hemoglobin, Hydrogen Peroxide
Full-Text [PDF 771 kb]   (242 Downloads)    
Type of Study: article | Subject: Biochemistry
Received: 2023/09/26 | Accepted: 2023/11/28 | Published: 2023/12/17
References
1. Bai Z, Li G, Liang J, Su J, Zhang Y, Chen H, et al. Non-enzymatic electrochemical biosensor based on Pt NPs/RGO-CS-Fc nano-hybrids for the detection of hydrogen peroxide in living cells. J Biosens Bioelectron. 2016; 82:185-194. [DOI:10.1016/j.bios.2016.04.004] [PMID]
2. Deng Z, Tao J, Zhang W, Mu H, Wu H, Wang Y, et al. Effect of protein adsorption on electrospun hemoglobin/gelatin-MWCNTs microbelts modified electrode: Toward electrochemical measurement of hydrogen peroxide. Mater Chem Physics. 2021; 257:123827. [DOI:10.1016/j.matchemphys.2020.123827]
3. Bhunia S, Dolai S, Sun H, Jelinek R. "On/off/on" hydrogen-peroxide sensor with hemoglobin-functionalized carbon dots. Sens Actuators B Chem . 2018; 270:223-230. [DOI:10.1016/j.snb.2018.05.029]
4. Ma B, Kong Ch, Hu X, , Liu K ,Huang Q,Lv J, et al. A sensitive electrochemical nonenzymatic biosensor for the detection of H2O2 released from living cells based on ultrathin concave Ag nanosheets. J Biosens Bioelectron. 2018; 106: 29-36. [DOI:10.1016/j.bios.2018.01.041] [PMID]
5. Baghayeri M, Veisi H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@ Fe3O4-MWCNT nanocomposite. J Biosens Bioelectron. 2015; 74:190-198. [DOI:10.1016/j.bios.2015.06.016] [PMID]
6. Gaikwad R, Thangaraj P, Sen A. Direct and rapid measurement of hydrogen peroxide in human blood using a microfluidic device. Sci Rep . 2021; 11(1): 2960. [DOI:10.1038/s41598-021-82623-4] [PMID] []
7. Ye Y, Ji J, Pi F, Yang H, Liu J, zhang Y, et al. A novel electrochemical biosensor for antioxidant evaluation of phloretin based on cell-alginate/ʟ-cysteine/gold nanoparticle-modified glassy carbon electrode. J Biosens Bioelectron. 2018; 119: 119-125. [DOI:10.1016/j.bios.2018.07.051] [PMID]
8. Saleh Ahammad A. Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. J Biosens Bioelectron S. 2013:9(2). [DOI:10.4172/2155-6210.S9-001]
9. Tahirović A, Copra A, Omanovic-miklicanin E, Kalcher K . A chemiluminescence sensor for the determination of hydrogen peroxide. Talanta. 2007; 72(4): 1378-1385. [DOI:10.1016/j.talanta.2007.01.072] [PMID]
10. Su L, Cai Y, Wang L, Dong W, Mao G, Li Y, et al. Hemin@ carbon dot hybrid nanozymes with peroxidase mimicking properties for dual (colorimetric and fluorometric) sensing of hydrogen peroxide, glucose and xanthine. Mikrochim Acta. 2020; 187: 1-11. [DOI:10.1007/s00604-019-4103-4] [PMID]
11. Mazhabi RM, Ge L, Jiang H, Wang X. A facile photoelectrochemical sensor for high sensitive ROS and AA detection based on graphitic carbon nitride nanosheets. J Biosens Bioelectro. 2018; 107: 54-61. [DOI:10.1016/j.bios.2018.02.008] [PMID]
12. Tantawi O, Baalbaki A, Asmar R.E, Ghauch A . A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci Total Environ. 2019; 654: 107-117. [DOI:10.1016/j.scitotenv.2018.10.372] [PMID]
13. McCurdy Jr W, Bell H. Titrimetric determination of hydrogen peroxide in alkaline solution. Talanta. 1966; 13(7): 925-928. [DOI:10.1016/0039-9140(66)80189-3] [PMID]
14. Shamsazar A, Soheili-Moghaddam M, Asadi A. A novel electrochemical immunosensor based on MWCNT/CuO nanocomposite for effectively detection of carcinoembryonic antigen (CEA). Microchem J. 2023; 196: 109643. [DOI:10.1016/j.microc.2023.109643]
15. Li C, Wu R, Zou J, Zhang T, Zhang S, Zhang Z , et al. MNPs@ anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. J Biosens Bioelectron. 2018; 116: 81-88. [DOI:10.1016/j.bios.2018.05.045] [PMID]
16. Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. J Biosens Bioelectron. 2013; 45: 206-212. [DOI:10.1016/j.bios.2013.02.010] [PMID]
17. Altinkaynak C, Turk M, Ekremoglu M, Özdemir N. Peroxidase-like activity of hemoglobin-based hybrid materials against different substrates and their enhanced application for H2O2 detection. Bull Chem Soc Ethiop. 2021; 35(3):537-55. [DOI:10.4314/bcse.v35i3.6]
18. Elancheziyan M, Senthilkumar S. Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl Surf Sci. 2019; 495: 143540. [DOI:10.1016/j.apsusc.2019.143540]
19. Xie H, Luo G, Niu Y, Weng W, zhao Y, Ling Z, et al. Synthesis and utilization of Co3O4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. Mater Sci Eng C. 2020; 107: 110209. [DOI:10.1016/j.msec.2019.110209] [PMID]
20. Zhang M, Zhang J, Wang J, Xu J, Hayat T, Alharbi NS. Direct electrochemistry of cytochrome c immobilized on one dimensional Au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2. Sens Actuators B Chem. 2019; 282: 85-95. [DOI:10.1016/j.snb.2018.11.005]
21. Mani V, Dinesh B, Chen Sh.M, Saraswathi R. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite. J Biosens Bioelectron. 2014; 53: 420-427. [DOI:10.1016/j.bios.2013.09.075] [PMID]
22. Narwal V, Yadav N, Thakur M, Pundir Ch.S. An amperometric H2O2 biosensor based on hemoglobin nanoparticles immobilized on to a gold electrode. Biosci Rep. 2017; 37(4): BSR20170194. [DOI:10.1042/BSR20170194] [PMID] []
23. Elewi AS, Al-Shammaree SAW, Sammarraie AKMA. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles-screen printed carbon electrode. Sens Bio-Sens Res. 2020; 28: 100340. [DOI:10.1016/j.sbsr.2020.100340]
24. Si Y, Park JW, Jung S, HwanG G-S, Goh E, Lee HJ. Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. J Biosens Bioelectron. 2018; 121: 265-271. [DOI:10.1016/j.bios.2018.08.074] [PMID]
25. Hajializadeh A. Electrochemical sensor based on MWCNTs/Co3O4/SPGE for simultaneous detection of Sudan I and Bisphenol A. J Electrochem Sci Eng. 2022; 12(1): 185-197. [DOI:10.5599/jese.1211]
26. Chattopadhyay S, Chakraborty SP, Laha D, Baral R, Roy S. Surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development. Cancer nanotechnol. 2012; 3(1): 13-23. [DOI:10.1007/s12645-012-0026-z] [PMID] []
27. Sabir FK, Bekele ET, Gonfa BA, Edossa GD, Adino AT. Synthesis of cobalt oxide nanoparticles through chemical and biological pathways for antibacterial activity. J Nanostructures. 2021; 11(3): 577-587.
28. Papis E, Rossi F, Raspanti M, Donne ID, Colombo G, Milzani A, et al. Engineered cobalt oxide nanoparticles readily enter cells. Toxicol lett. 2009; 189(3): 253-259. [DOI:10.1016/j.toxlet.2009.06.851] [PMID]
29. Dai H, Chen Y, Niu X, Pan C, Chen H, Chen X. High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@ C-Co3O4 heterostructures. J Biosens Bioelectron. 2018; 118: 36-43. [DOI:10.1016/j.bios.2018.07.022] [PMID]
30. Sheikholeslam M, Nanda P, Sanati A, Pritzker M, Chen P. Direct electrochemistry of hemoglobin/peptide-carbon nanotube modified electrode for hydrogen peroxide biosensing. Mater Lett. 2023; 335: 133799. [DOI:10.1016/j.matlet.2022.133799]
31. Alim S, Vejayan J, Yusoff MM, Kafi AKM. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens Bioelectron. 2018; 121: 125-136. [DOI:10.1016/j.bios.2018.08.051] [PMID]
32. Jiang H, Lee EC. Highly selective, reusable electrochemical impedimetric DNA sensors based on carbon nanotube/polymer composite electrode without surface modification. Biosens Bioelectron. 2018; 118: 16-22. [DOI:10.1016/j.bios.2018.07.037] [PMID]
33. Shamsazar A, Asadi A, Seifzadeh D, Mahdavi M. A novel and highly sensitive sandwich-type immunosensor for prostate-specific antigen detection based on MWCNTs-Fe3O4 nanocomposite. Sens Actuators B Chem. 2021; 346: 130459. [DOI:10.1016/j.snb.2021.130459]
34. Lakshmi A, Gracelin DL, Vigneshwari M, Karpagavinayagam P, Veeraputhiran V, Vedhi C.
35. Microwave Synthesis and Characterization of Multiwalled Carbon Nanotubes (MWCNT) and Metal Oxide Doped MWCNT. J Nanosci Nanotechnol. 2015; 1(1):19-22.
36. Mkhondo N, Magadzu T. Surface properties of metal oxides and their role on electrochemical hydrogen storage of carbon nanotubes. Dig J Nanomater Bios. 2018; 13(4) 921-929.
37. Gergeroglu H,Yildirim S, Ebeoglugil MF. Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C 60). SN Appl Sci. 2020; 2:1-22. [DOI:10.1007/s42452-020-2404-1]
38. Yagati AK, Ngoc Le HT, Cho S. Bioelectrocatalysis of hemoglobin on electrodeposited Ag nanoflowers toward H2O2 detection. Nanomaterials. 2020; 10(9):1628. [DOI:10.3390/nano10091628] [PMID] []
39. Kong L, Ren Zh, Zheng N, Du Sh, Wu J, Tang J, et al. Interconnected 1D Co 3 O 4 nanowires on reduced graphene oxide for enzymeless H 2 O 2 detection. Nano Res. 2015; 8:469-480. [DOI:10.1007/s12274-014-0617-6]
40. Yang J, Xu Y, He P, Fang Y. Direct electrochemistry and electrocatalysis of hemoglobin on aligned carbon nanotubes based electrodes modified with Au nanoparticles and SiO2 gel. Electroanalysis. 2013; 25(10):2345-2353. [DOI:10.1002/elan.201300196]
41. Gaidukevic J, Aukstakojyte R, Kozlowski M, Barkauskas J, Pauliukaite R. A simple preparation of N-doped reduced graphene oxide as an electrode material for the detection of hydrogen peroxide and glucose. Electrochim Acta. 2023; 446:142113. [DOI:10.1016/j.electacta.2023.142113]
42. Murphy M, Theyagarajan K, Prabusankar G, Senthilkumar S, Thenmozhi K. Electrochemical biosensor for the detection of hydrogen peroxide using cytochrome c covalently immobilized on carboxyl functionalized ionic liquid/multiwalled carbon nanotube hybrid. Appl Surf Sci . 2019; 492:718-725. [DOI:10.1016/j.apsusc.2019.06.283]
43. Mai L, Bui Q, Bach L, Nhac-Vu H. A novel nanohybrid of cobalt oxide-sulfide nanosheets deposited three-dimensional foam as efficient sensor for hydrogen peroxide detection. J Electroanal Chem. 2020; 857: 113757. [DOI:10.1016/j.jelechem.2019.113757]
44. Murphy M, Theyagarajan K, Thenmozhi K, Senthilkumar S. Direct electrochemistry of covalently immobilized hemoglobin on a naphthylimidazolium butyric acid ionic liquid/MWCNT matrix. Colloids Surf B. 2021; 199: 111540. [DOI:10.1016/j.colsurfb.2020.111540] [PMID]
45. Kafi A, Alim S, Jose R, Yusoff M. Hemoglobin Immobilization on Multiporous Nanofibers of SnO2 and Chitosan Composite for Hydrogen Peroxide Sensing. J Nanosci Nanotechnol. 2019; 19(4): 2027-2033. [DOI:10.1166/jnn.2019.15465] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saboorifar M, Shamsazar A, Asadi A, Shourian M. A Novel Design of a Non-Enzymatic Biosensor for the Detection of Hydrogen Peroxide Based on MWCNT/Co3O4/Hemoglobin Structures. J Ardabil Univ Med Sci 2023; 23 (3) : 7
URL: http://jarums.arums.ac.ir/article-1-2327-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 3 (Autumn 2023) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.19 seconds with 41 queries by YEKTAWEB 4623