Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran. , h.kalarestaghy111@gmail.com
Abstract: (969 Views)
Premature Ovarian Insufficiency (POI) refers to the loss of ovarian function before the age of 40. This condition can be attributed to various factors including X chromosome abnormalities, autoimmune disorders, and chemotherapy drugs. Hormone therapy is a commonly used treatment for POI, but due to side effects and low fertility rates, alternative treatment options are needed. In recent years, stem cell transplantation has emerged as a promising treatment approach, offering hope for improving and restoring ovarian function. Stem cells possess the unique ability of self-renewal and regeneration, making them potentially effective in addressing ovarian failure and subsequent infertility. Different types of stem cells have been investigated for the treatment of POI, including mesenchymal stem cells (MSCs), stem cells from extraembryonic tissues, induced pluripotent stem cells (iPSCs), and ovarian stem cells. This article aims to provide an overview of the causes and treatment options for Premature Ovarian Insufficiency, with a particular focus on stem cell therapy as suggested by previous studies.
Corresponding Author: Hossein Kalarestaghy, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
Email: h.kalarestaghy111@gmail.com google scholar pubmed
Type of Study: review article |
Subject: Gynecology Received: 2023/06/11 | Accepted: 2023/09/9 | Published: 2023/10/2
References
1. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008; 23(3): 699-708. [DOI:10.1093/humrep/dem408] [PMID]
2. Seghinsara AM, Shoorei H, Taheri MMH, Khaki A, Shokoohi M, Tahmasebi M, et al. Panax ginseng extract improves follicular development after mouse preantral follicle 3D culture. Cell J. 2019; 21(2): 210-219.
3. Cohen J, Chabbert-Buffet N, Darai E. Diminished ovarian reserve, premature ovarian failure, poor ovarian respondera plea for universal definitions. J Assist Reprod Genet. 2015; 32: 1709-12. [DOI:10.1007/s10815-015-0595-y] [PMID] []
4. Delkhosh A, Delashoub M, Tehrani AA, Bahrami AM, Niazi V, Shoorei H, et al. Upregulation of FSHR and PCNA by administration of coenzyme Q10 on cyclophosphamide‐induced premature ovarian failure in a mouse model. J Biochem Mol Toxicol. 2019; 33(11): e22398. [DOI:10.1002/jbt.22398] [PMID]
5. Ghahremani‐Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol. 2020; 235(5): 4217-26. [DOI:10.1002/jcp.29376] [PMID]
7. Cox L, Liu JH. Primary ovarian insufficiency: an update. Int J Womens Health. 2014: 235-43. [DOI:10.2147/IJWH.S37636] [PMID] []
8. Rafique S, Sterling EW, Nelson LM. A new approach to primary ovarian insufficiency. Obstet Gynecol. 2012; 39(4): 567-86. [DOI:10.1016/j.ogc.2012.09.007] [PMID] []
9. Volarevic V, Bojic S, Nurkovic J, Volarevic A, Ljujic B, Arsenijevic N, et al. Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. Biomed Res Int. 2014;2014:507234. [DOI:10.1155/2014/507234] [PMID] []
10. Gonçalves CR, Vasconcellos AS, Rodrigues TR, Comin FV, Reis FM. Hormone therapy in women with premature ovarian insufficiency: a systematic review and meta-analysis. Reprod Biomed. 2022; 44(6):1143-57 [DOI:10.1016/j.rbmo.2022.02.006] [PMID]
11. Na J, Kim GJ. Recent trends in stem cell therapy for premature ovarian insufficiency and its therapeutic potential: a review. J Ovarian Res. 2020; 13(1):74. [DOI:10.1186/s13048-020-00671-2] [PMID] []
12. Shafaei H, Kalarestaghi H. Adipose‐derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol. 2020; 235(11): 8371-86. [DOI:10.1002/jcp.29681] [PMID]
13. Sheikhansari G, Aghebati-Maleki L, Nouri M, Jadidi-Niaragh F, Yousefi M. Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed Pharmacother. 2018; 102: 254-62. [DOI:10.1016/j.biopha.2018.03.056] [PMID]
14. Ciccocioppo R, Cantore A, Chaimov D, Orlando G. Regenerative medicine: the red planet for clinicians. Intern Emerg Med. 2019; 14(6):911-921. [DOI:10.1007/s11739-019-02126-z] [PMID]
15. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017; 6(12): 2173-85. [DOI:10.1002/sctm.17-0129] [PMID] []
16. Petersen B, Bowen W, Patrene K, Mars W, Sullivan A, Murase Na, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999; 284(5417):1168-70. [DOI:10.1126/science.284.5417.1168] [PMID]
17. Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet. 2018; 35:1135-48. [DOI:10.1007/s10815-018-1180-y] [PMID] []
18. Feng P, Li P, Tan J. Human menstrual blood-derived stromal cells promote recovery of premature ovarian insufficiency via regulating the ECM-dependent FAK/AKT signaling. Stem Cell Rev Rep. 2019;15: 241-55. [DOI:10.1007/s12015-018-9867-0] [PMID] []
19. Grady ST, Watts AE, Thompson JA, Penedo MCT, Konganti K, Hinrichs K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. J Assist Reprod Genet. 2019; 36: 543-56. [DOI:10.1007/s10815-018-1371-6] [PMID] []
20. Badawy A, Sobh MA, Ahdy M, Abdelhafez MS. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health. 2017; 15(9): 441-447 [DOI:10.2147/IJWH.S134074] [PMID] []
21. Pan Y, Zhang L, Zhang X, Hu C, Liu R. Biological and biomechanical analysis of two types of mesenchymal stem cells for intervention in chemotherapy-induced ovarian dysfunction. Arch Gynecol Obstet. 2017; 295(1):247-252. [DOI:10.1007/s00404-016-4224-5] [PMID]
22. Chronowska E. Stem cell characteristics of ovarian granulosa cells-review. Ann Anim Sci. 2012; 12(2):151-7. [DOI:10.2478/v10220-012-0012-8]
23. Wang W-C, Lai Y-C. Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation. J Ovarian Res. 2014; 7: 88.
https://doi.org/10.1186/s13048-014-0088-0 [DOI:10.1186/PREACCEPT-1042319673125706] [PMID] []
24. Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research progress on the treatment of premature ovarian failure using mesenchymal stem cells: a literature review. Front Cell Dev Biol. 2021; 9: 749822. [DOI:10.3389/fcell.2021.749822] [PMID] []
25. Bedoschi G, Navarro PA, Oktay K. Chemotherapy-induced damage to ovary: mechanisms and clinical impact. Future Oncol. 2016; 12(19): 2333-44. [DOI:10.2217/fon-2016-0176] [PMID] []
26. Ling L, Feng X, Wei T, Wang Y, Wang Y, Wang Z, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther. 2019; 25: 10(1): 46-55. [DOI:10.1186/s13287-019-1136-x] [PMID] []
27. Ling L, Feng X, Wei T, Wang Y, Wang Y, Zhang W, et al. Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats. Stem Cell Res Ther. 2017; 8(1): 283. [DOI:10.1186/s13287-017-0739-3] [PMID] []
28. Xia X, Yin T, Yan J, Yan L, Jin C, Lu C, et al. Mesenchymal stem cells enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation. Cell Transplant. 2015; 24(10): 1999-2010. [DOI:10.3727/096368914X685267] [PMID]
29. Wang M-Y, Wang Y-X, Li-Ling J, Xie H-Q. Adult stem cell therapy for premature ovarian failure: from bench to bedside. Tissue Eng Part B Rev. 2022; 28(1): 63-78. [DOI:10.1089/ten.teb.2020.0205] [PMID]
30. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012; 18(1):73-91. [DOI:10.1093/humupd/dmr039] [PMID]
31. Shokoohi M, Soltani M, Abtahi-Eivary S-H, Niazi V, Poor MJR, Ravaei H, et al. Effect of hydro-alcoholic extract of Olea europaea on apoptosis-related genes and oxidative stress in a rat model of torsion/detorsion-induced ovarian damage. Asian Pac J Reprod. 2019; 8(4): 148-56. [DOI:10.4103/2305-0500.262831]
32. Zhang H, Risal S, Gorre N, Busayavalasa K, Li X, Shen Y, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 2014; 24(21): 2501-8. [DOI:10.1016/j.cub.2014.09.023] [PMID]
33. Macklon N, Fauser B. Aspects of ovarian follicle development throughout life. Horm Res Paediatr. 1999; 52(4): 161-70. [DOI:10.1159/000023456] [PMID]
34. Nelson L. NIH public access-primary ovarian insufficiency. N Engl J Med. 2009; 360(6): 606-14. [DOI:10.1056/NEJMcp0808697] [PMID] []
36. Stearns V, Schneider B, Henry NL, Hayes DF, Flockhart DA. Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nat Rev Cancer. 2006; 6(11): 886-93. [DOI:10.1038/nrc1992] [PMID]
37. van Kasteren YM, Schoemaker J. Premature ovarian failure: a systematic review on therapeutic interventions to restore ovarian function and achieve pregnancy. Hum Reprod Update. 1999; 5(5): 483-92. [DOI:10.1093/humupd/5.5.483] [PMID]
38. Deniz G, Antoine C, Liebens F, Carly B, Pastijn A, Rozenberg S. Treatment of premature menopause in breast cancer patients. Acta Chir Belg. 2007; 107(3): 263-6. [DOI:10.1080/00015458.2007.11680053] [PMID]
39. Nappi RE, Cassani C, Rossi M, Zanellini F, Spinillo A. Dealing with premature menopause in women at high-risk for hereditary genital and breast cancer. Minerva Ginecol. 2016; 68(5): 602-12.
40. Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells-a review. Biotechnol Adv. 2018; 36(4):1111-26. [DOI:10.1016/j.biotechadv.2018.03.011] [PMID]
41. Fu X-f, He Y-l, Xie C-h, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008; 10(4):353-63. [DOI:10.1080/14653240802035926] [PMID]
42. Kilic S, Pinarli F, Ozogul C, Tasdemir N, Naz Sarac G, Delibasi T. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol. 2014; 30(2):135-40. [DOI:10.3109/09513590.2013.860127] [PMID]
43. Liu J, Zhang H, Zhang Y, Li N, Wen Y, Cao F, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol Cells. 2014; 37(12):865-72. [DOI:10.14348/molcells.2014.0145] [PMID] []
44. Mohamed SA, Shalaby SM, Abdelaziz M, Brakta S, Hill WD, Ismail N, et al. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci. 2018; 25(1):51-63. [DOI:10.1177/1933719117699705] [PMID] []
45. Park H-S, Ashour D, Elsharoud A, Chugh RM, Ismail N, Andaloussi AE, et al. Towards cell free therapy of premature ovarian insufficiency: human bone marrow mesenchymal stem cells secretome enhances angiogenesis in human ovarian microvascular endothelial cells. HSOA J Stem Cells Res Dev Ther. 2019;5(2):019. [DOI:10.24966/SRDT-2060/100019] [PMID] []
46. Gupta S, Lodha P, Karthick MS, Tandulwadkar SR. Role of autologous bone marrow-derived stem cell therapy for follicular recruitment in premature ovarian insufficiency: Review of literature and a case report of world's first baby with ovarian autologous stem cell therapy in a perimenopausal woman of age 45 year. Hum Reprod Sci. 2018; 11(2):125-130. [DOI:10.4103/jhrs.JHRS_57_18] [PMID] []
47. Gabr H, Elkheir W, El-Gazzar A. Autologous stem cell transplantation in patients with idiopathic premature ovarian failure. J Tissue Eng. 2016; 7(3):27-33.
48. Edessy M, Hosni HN, Shady Y, Waf Y, Bakr S, Kamel M. Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Med. 2016; 3(1):19-23. [DOI:10.5530/ami.2016.1.7]
49. Herraiz S, Romeu M, Buigues A, Martínez S, Díaz-García C, Gómez-Seguí I, et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril. 2018; 110(3):496-506. [DOI:10.1016/j.fertnstert.2018.04.025] [PMID]
50. Neri S, Bourin P, Peyrafitte J-A, Cattini L, Facchini A, Mariani E. Human adipose stromal cells (ASC) for the regeneration of injured cartilage display genetic stability after in vitro culture expansion. PLoS One. 2013; 8(10):e77895. [DOI:10.1371/journal.pone.0077895] [PMID] []
51. Shi D, Liao L, Zhang B, Liu R, Dou X, Li J, et al. Human adipose tissue− derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1− mediated inhibition of NF-κB signaling. Exp Hematol. 2011; 39(2):214-24. [DOI:10.1016/j.exphem.2010.10.009] [PMID]
52. Xue C, Shen Y, Li X, Li B, Zhao S, Gu J, et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Exp Hematol. 2018; 27(7):456-65. [DOI:10.1089/scd.2017.0296] [PMID]
53. Huang B, Lu J, Ding C, Zou Q, Wang W, Li H. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res Ther. 2018; 9(1):216. [DOI:10.1186/s13287-018-0953-7] [PMID] []
54. Song K, Cai H, Zhang D, Huang R, Sun D, He Y. Effects of human adipose-derived mesenchymal stem cells combined with estrogen on regulatory T cells in patients with premature ovarian insufficiency. Int Immunopharmacol. 2018; 55:257-62. [DOI:10.1016/j.intimp.2017.12.026] [PMID]
55. Vural B, Duruksu G, Vural F, Gorguc M, Karaoz E. Effects of VEGF+ mesenchymal stem cells and platelet-rich plasma on inbred rat ovarian functions in cyclophosphamide-induced premature ovarian insufficiency model. Stem Cell Rev Rep. 2019; 15(4):558-73. [DOI:10.1007/s12015-019-09892-5] [PMID]
56. Mashayekhi M, Mirzadeh E, Chekini Z, Ahmadi F, Eftekhari-Yazdi P, Vesali S, et al. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: Non-randomized clinical trial, phase I, first in human. J Ovarian Res. 2021;14(1):5. [DOI:10.1186/s13048-020-00743-3] [PMID] []
57. Liu R, Zhang X, Fan Z, Wang Y, Yao G, Wan X, et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther. 2019; 10(1):299. [DOI:10.1186/s13287-019-1315-9] [PMID] []
58. Wu Q, Fang T, Lang H, Chen M, Shi P, Pang X, et al. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. Int J Mol Med. 2017; 39(4):918-26. [DOI:10.3892/ijmm.2017.2897] [PMID] []
59. Zhang Q, Bu S, Sun J, Xu M, Yao X, He K, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther. 2017;8(1):270. [DOI:10.1186/s13287-017-0721-0] [PMID] []
60. Fu Y-X, Ji J, Shan F, Li J, Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and opportunities. Stem Cell Res Ther. 2021; 12(1):161. [DOI:10.1186/s13287-021-02212-0] [PMID] []
61. Ghasemzadeh M, Hosseini E, Ahmadi M, Kamalizad M, Amirizadeh N. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow. Cytotechnology. 2018; 70:729-39. [DOI:10.1007/s10616-017-0177-1] [PMID] []
62. Li Y, Liu Z, Jin Y, Zhu X, Wang S, Yang J, et al. Differentiation of human amniotic mesenchymal stem cells into human anterior cruciate ligament fibroblast cells by in vitro coculture. Biomed Res Int. 2017;2017:7360354. [DOI:10.1155/2017/7360354] [PMID] []
63. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DÖ, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007; 25(2):319-31. [DOI:10.1634/stemcells.2006-0286] [PMID]
64. Miraki S, Rashidi A, Banafshi O, Alasvand M, Fathi F, Golmohammadi MG. Effects of embryonic stem cell-conditioned medium on the preimplantation development of mouse embryos. Zygote. 2022; 30(4):464-70. [DOI:10.1017/S0967199421000575] [PMID]
65. Ranjbaran H, Abediankenari S, Mohammadi M, Jafari N, Khalilian A, Rahmani Z, et al. Wharton's jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Med Iran. 2018; 56(1):28-33.
66. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007; 5:57. [DOI:10.1186/1479-5876-5-57] [PMID] []
67. Cui C-H, Uyama T, Miyado K, Terai M, Kyo S, Kiyono T, et al. Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007; 18(5):1586-94. [DOI:10.1091/mbc.e06-09-0872] [PMID] []
68. Lai D, Guo Y, Zhang Q, Chen Y, Xiang C. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. Acta Biochim Biophys Sin (Shanghai). 2016; 48(11):998-1005. [DOI:10.1093/abbs/gmw090] [PMID]
69. Wang Z, Wang Y, Yang T, Li J, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. 2017; 8:11-18. [DOI:10.1186/s13287-016-0458-1] [PMID] []